[1]
H.L. McConnell, C.N. Kersch, R.L. Woltjer, E.A. Neuwelt, The translational significance of the neurovascular unit, Journal of Biological Chemistry 292(3) (2017) 762-770.
DOI: 10.1074/jbc.r116.760215
Google Scholar
[2]
C. Iadecola, Neurovascular regulation in the normal brain and in Alzheimer's disease, Nature Reviews Neuroscience 5(5) (2004) 347-360.
DOI: 10.1038/nrn1387
Google Scholar
[3]
N.J. Abbott, L. Rönnbäck, E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier, Nature Reviews Neuroscience 7(1) (2006) 41-53.
DOI: 10.1038/nrn1824
Google Scholar
[4]
X. Hu, T. Michael De Silva, J. Chen, F.M. Faraci, Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke, Circulation Research 120(3) (2017) 449-471.
DOI: 10.1161/circresaha.116.308427
Google Scholar
[5]
C. Huang, Z. Chai, B. Shi, Non-newtonian effect on hemodynamic characteristics of blood flow in stented cerebral aneurysm, Communications in Computational Physics 13(3) (2013) 916-928.
DOI: 10.4208/cicp.281011.020212s
Google Scholar
[6]
M. Iasiello, K. Vafai, A. Andreozzi, N. Bianco, Analysis of non-Newtonian effects on Low-Density Lipoprotein accumulation in an artery, Journal of Biomechanics 49(9) (2016) 1437-1446.
DOI: 10.1016/j.jbiomech.2016.03.017
Google Scholar
[7]
F. Yilmaz, Ya ar Gundogdu, M., A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions, Korea-Australia Rheology Journal 20(4) (2008) 197-211.
Google Scholar
[8]
T. Sochi, Non-Newtonian Rheology in Blood Circulation, arXiv:1306.2067v2 [physics.flu-dyn] (2014).
Google Scholar
[9]
M.M. Molla, M.C. Paul, LES of non-Newtonian physiological blood flow in a model of arterial stenosis, Medical Engineering and Physics 34(8) (2012) 1079-1087.
DOI: 10.1016/j.medengphy.2011.11.013
Google Scholar
[10]
D. Le Bihan, Looking into the functional architecture of the brain with diffusion MRI, Nature Reviews Neuroscience 4(6) (2003) 469-480.
DOI: 10.1038/nrn1119
Google Scholar
[11]
B. Lizák, A. Szarka, Y. Kim, K.S. Choi, C.E. Németh, P. Marcolongo, A. Benedetti, G. Bánhegyi, É. Margittai, Glucose transport and transporters in the endomembranes, International Journal of Molecular Sciences 20(23) (2019).
DOI: 10.3390/ijms20235898
Google Scholar
[12]
M. Kreft, M. Lukšič, T.M. Zorec, M. Prebil, R. Zorec, Diffusion of d-glucose measured in the cytosol of a single astrocyte, Cellular and Molecular Life Sciences 70(8) (2013) 1483-1492.
DOI: 10.1007/s00018-012-1219-7
Google Scholar
[13]
A.N. Bashkatov, Genina, E.A., Sinichkin, Y.P., Kochubey, V.I., Lakodina, N.A., Tuchin V.V., Glucose and Mannitol Diffusion in Human Dura Mater, Biophys J. 85(5) (2003) 3310-3318.
DOI: 10.1016/s0006-3495(03)74750-x
Google Scholar
[14]
E. Vendel, V. Rottschäfer, E.C.M. De Lange, The need for mathematical modelling of spatial drug distribution within the brain, Fluids and Barriers of the CNS 16(1) (2019).
DOI: 10.1186/s12987-019-0133-x
Google Scholar
[15]
D.Y. Arifin, K.Y.T. Lee, C.H. Wang, Chemotherapeutic drug transport to brain tumor, Journal of Controlled Release 137(3) (2009) 203-210.
DOI: 10.1016/j.jconrel.2009.04.013
Google Scholar
[16]
M. Hashimoto, J.E. Wilson, Kinetic and regulatory properties of HK I + , a modified form of the type I isozyme of mammalian hexokinase in which interactions between the N- and C-terminal halves have been disrupted, Archives of Biochemistry and Biophysics 399(1) (2002) 109-115.
DOI: 10.1006/abbi.2001.2744
Google Scholar
[17]
W. Zhan, D.Y. Arifin, T.K. Lee, C.H. Wang, Mathematical Modelling of Convection Enhanced Delivery of Carmustine and Paclitaxel for Brain Tumour Therapy, Pharmaceutical Research 34(4) (2017) 860-873.
DOI: 10.1007/s11095-017-2114-6
Google Scholar
[18]
A. Aubert, R. Costalat, Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism, Journal of Cerebral Blood Flow and Metabolism 25(11) (2005) 1476-1490.
DOI: 10.1038/sj.jcbfm.9600144
Google Scholar
[19]
J.E. Wilson, Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function, Journal of Experimental Biology 206(12) (2003) 2049-2057.
DOI: 10.1242/jeb.00241
Google Scholar
[20]
E. Sykova, Nicholson, C., Diffusion in brain extracellular space, Physiological Reviews 88(4) (2008) 1277-1340.
DOI: 10.1152/physrev.00027.2007
Google Scholar
[21]
I.A. Simpson, A. Carruthers, S.J. Vannucci, Supply and demand in cerebral energy metabolism: The role of nutrient transporters, Journal of Cerebral Blood Flow and Metabolism 27(11) (2007) 1766-1791.
DOI: 10.1038/sj.jcbfm.9600521
Google Scholar
[22]
A.G. Lowe, A.R. Walmsley, The kinetics of glucose transport in human red blood cells, BBA - Biomembranes 857(2) (1986) 146-154.
DOI: 10.1016/0005-2736(86)90342-1
Google Scholar
[23]
D.e. Dwyer, Glucose metabolism in the brain, International Review of Neurobiology 51 (2002) 1-535.
Google Scholar
[24]
S.B. Hladky, M.A. Barrand, Elimination of substances from the brain parenchyma: Efflux via perivascular pathways and via the blood-brain barrier 11 Medical and Health Sciences 1109 Neurosciences, Fluids and Barriers of the CNS 15(1) (2018).
DOI: 10.1186/s12987-018-0113-6
Google Scholar
[25]
S.G. Patching, Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery, Molecular Neurobiology 54(2) (2017) 1046-1077.
DOI: 10.1007/s12035-015-9672-6
Google Scholar
[26]
S.B. Hladky, Barrand, M.A., Mechanisms of fluid movement into, through and out of the brain: Evaluation of the evidence, Fluids and Barriers of the CNS 11(1) (2014) art. no. 26.
DOI: 10.1186/2045-8118-11-26
Google Scholar
[27]
N.J. Abbott, Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology, Neurochemistry International 45(4) (2004) 545-552.
DOI: 10.1016/j.neuint.2003.11.006
Google Scholar
[28]
N.J. Abbott, Patabendige, A.A.K., Dolman, D.E.M., Yusof, S.R., Begley, D.J., Structure and function of the blood-brain barrier, Neurobiology of Disease 37(1) (2010) 13-25.
DOI: 10.1016/j.nbd.2009.07.030
Google Scholar
[29]
I.Y. Choi, S.P. Lee, S.G. Kim, R. Gruetter, In vivo measurements of brain glucose transport using the reversible michaelis-menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia, Journal of Cerebral Blood Flow and Metabolism 21(6) (2001) 653-663.
DOI: 10.1097/00004647-200106000-00003
Google Scholar
[30]
R. Gruetter, K. Ugurbil, E.R. Seaquist, Steady-state cerebral glucose concentrations and transport in the human brain, Journal of Neurochemistry 70(1) (1998) 397-408.
DOI: 10.1046/j.1471-4159.1998.70010397.x
Google Scholar
[31]
C. Förster, Tight junctions and the modulation of barrier function in disease, Histochemistry and Cell Biology 130(1) (2008) 55-70.
DOI: 10.1007/s00418-008-0424-9
Google Scholar
[32]
X. Jiang, A.V. Andjelkovic, L. Zhu, T. Yang, M.V.L. Bennett, J. Chen, R.F. Keep, Y. Shi, Blood-brain barrier dysfunction and recovery after ischemic stroke, Progress in Neurobiology 163-164 (2018) 144-171.
DOI: 10.1016/j.pneurobio.2017.10.001
Google Scholar
[33]
V.I. Skvortsova, Y.R. Nartsissov, M.K. Bodykhov, I.V. Kichuck, N.A. Pryanikova, Y.V. Gudkova, T.D. Soldatenkova, T.T. Kondrashova, E.V. Kalinina, M.D. Novichkova, A.B. Shutyeva, O.B. Kerbikov, Oxidative stress and oxygen status in ischemic stroke, Zhurnal Nevrologii i Psihiatrii imeni S.S. Korsakova 107(1) (2007) 30-36.
Google Scholar
[34]
Y. Itoh, N. Suzuki, Control of brain capillary blood flow, Journal of Cerebral Blood Flow and Metabolism 32(7) (2012) 1167-1176.
DOI: 10.1038/jcbfm.2012.5
Google Scholar
[35]
G.I. Podoprigora, Y.R. Nartsissov, P.N. Aleksandrov, Effect of glycine on microcirculation in pial vessels of rat brain, Bulletin of experimental biology and medicine 139(6) (2005) 675-677.
DOI: 10.1007/s10517-005-0375-2
Google Scholar
[36]
O. Blagosklonov, G.I. Podoprigora, S. Davani, Y.R. Nartsissov, L. Comas, H. Boulahdour, J.C. Cardot, J.M.U.H., FDG-PET scan shows increased cerebral blood flow in rat after sublingual glycine application, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 571(1-2 SPEC. ISS.) (2007) 30-32.
DOI: 10.1016/j.nima.2006.10.022
Google Scholar
[37]
Y.R. Nartsissov, E.S. Tyukina, S.E. Boronovsky, E.V. Sheshegova, Computer modeling of spatial-time distribution of metabolite concentrations in phantoms of biological objects by example of rat brain pial, Biophysics (Russian Federation) 58(5) (2013) 703-711.
DOI: 10.1134/s0006350913050102
Google Scholar