The Effect of Flux Dysconnectivity Functions on Concentration Gradients Changes in a Multicomponent Model of Convectional Reaction-Diffusion by the Example of a Neurovascular Unit

Article Preview

Abstract:

A convectional diffusion of nutrients around the blood vessels in brain occurs in well-structured neurovascular units (NVU) including neurons, glia and micro vessels. A common feature of the process is a combination of a relatively high-speed delivery solution stream inside the blood vessel and a low-speed convectional flow in parenchyma. The specific trait of NVU is the existence of a tight cover layer around the vessels which is formed by shoots (end-feet) of astrocytes. This layer forms so called blood-brain barrier (BBB). Under different pathological states the permeability of BBB is changed. The concentration gradient of a chemical compound in NVU has been modelled using a combination of mathematical description of a cerebral blood flow (CBF) and further 3D diffusion away from the blood vessels borders. The governing equation for the blood flow is the non-steady-state Navier–Stokes equation for an incompressible non-Newtonian fluid flow without buoyancy effects. BBB is modeled by the flux dysconnectivity functions. The velocity of fluid flow in the paravascular space was estimated using Darcy's law. Finally, the diffusion of the nutrient is considered as a convectional reaction-diffusion in a porous media. By the example of glucose, it was shown that increased permeability of BBB yields an increased level of the nutrient even under essential (on 70%) decrease of CBF. Contrarily, a low BBB permeability breeds a decreased concentration level under increased (on 50%) CBF. Such a phenomenon is explained by a smooth enlarge of the direct diffusion area for a blood-to-brain border glucose transport having three-level organization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-28

Citation:

Online since:

December 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.L. McConnell, C.N. Kersch, R.L. Woltjer, E.A. Neuwelt, The translational significance of the neurovascular unit, Journal of Biological Chemistry 292(3) (2017) 762-770.

DOI: 10.1074/jbc.r116.760215

Google Scholar

[2] C. Iadecola, Neurovascular regulation in the normal brain and in Alzheimer's disease, Nature Reviews Neuroscience 5(5) (2004) 347-360.

DOI: 10.1038/nrn1387

Google Scholar

[3] N.J. Abbott, L. Rönnbäck, E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier, Nature Reviews Neuroscience 7(1) (2006) 41-53.

DOI: 10.1038/nrn1824

Google Scholar

[4] X. Hu, T. Michael De Silva, J. Chen, F.M. Faraci, Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke, Circulation Research 120(3) (2017) 449-471.

DOI: 10.1161/circresaha.116.308427

Google Scholar

[5] C. Huang, Z. Chai, B. Shi, Non-newtonian effect on hemodynamic characteristics of blood flow in stented cerebral aneurysm, Communications in Computational Physics 13(3) (2013) 916-928.

DOI: 10.4208/cicp.281011.020212s

Google Scholar

[6] M. Iasiello, K. Vafai, A. Andreozzi, N. Bianco, Analysis of non-Newtonian effects on Low-Density Lipoprotein accumulation in an artery, Journal of Biomechanics 49(9) (2016) 1437-1446.

DOI: 10.1016/j.jbiomech.2016.03.017

Google Scholar

[7] F. Yilmaz, Ya ar Gundogdu, M., A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions, Korea-Australia Rheology Journal 20(4) (2008) 197-211.

Google Scholar

[8] T. Sochi, Non-Newtonian Rheology in Blood Circulation, arXiv:1306.2067v2 [physics.flu-dyn] (2014).

Google Scholar

[9] M.M. Molla, M.C. Paul, LES of non-Newtonian physiological blood flow in a model of arterial stenosis, Medical Engineering and Physics 34(8) (2012) 1079-1087.

DOI: 10.1016/j.medengphy.2011.11.013

Google Scholar

[10] D. Le Bihan, Looking into the functional architecture of the brain with diffusion MRI, Nature Reviews Neuroscience 4(6) (2003) 469-480.

DOI: 10.1038/nrn1119

Google Scholar

[11] B. Lizák, A. Szarka, Y. Kim, K.S. Choi, C.E. Németh, P. Marcolongo, A. Benedetti, G. Bánhegyi, É. Margittai, Glucose transport and transporters in the endomembranes, International Journal of Molecular Sciences 20(23) (2019).

DOI: 10.3390/ijms20235898

Google Scholar

[12] M. Kreft, M. Lukšič, T.M. Zorec, M. Prebil, R. Zorec, Diffusion of d-glucose measured in the cytosol of a single astrocyte, Cellular and Molecular Life Sciences 70(8) (2013) 1483-1492.

DOI: 10.1007/s00018-012-1219-7

Google Scholar

[13] A.N. Bashkatov, Genina, E.A., Sinichkin, Y.P., Kochubey, V.I., Lakodina, N.A., Tuchin V.V., Glucose and Mannitol Diffusion in Human Dura Mater, Biophys J. 85(5) (2003) 3310-3318.

DOI: 10.1016/s0006-3495(03)74750-x

Google Scholar

[14] E. Vendel, V. Rottschäfer, E.C.M. De Lange, The need for mathematical modelling of spatial drug distribution within the brain, Fluids and Barriers of the CNS 16(1) (2019).

DOI: 10.1186/s12987-019-0133-x

Google Scholar

[15] D.Y. Arifin, K.Y.T. Lee, C.H. Wang, Chemotherapeutic drug transport to brain tumor, Journal of Controlled Release 137(3) (2009) 203-210.

DOI: 10.1016/j.jconrel.2009.04.013

Google Scholar

[16] M. Hashimoto, J.E. Wilson, Kinetic and regulatory properties of HK I + , a modified form of the type I isozyme of mammalian hexokinase in which interactions between the N- and C-terminal halves have been disrupted, Archives of Biochemistry and Biophysics 399(1) (2002) 109-115.

DOI: 10.1006/abbi.2001.2744

Google Scholar

[17] W. Zhan, D.Y. Arifin, T.K. Lee, C.H. Wang, Mathematical Modelling of Convection Enhanced Delivery of Carmustine and Paclitaxel for Brain Tumour Therapy, Pharmaceutical Research 34(4) (2017) 860-873.

DOI: 10.1007/s11095-017-2114-6

Google Scholar

[18] A. Aubert, R. Costalat, Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism, Journal of Cerebral Blood Flow and Metabolism 25(11) (2005) 1476-1490.

DOI: 10.1038/sj.jcbfm.9600144

Google Scholar

[19] J.E. Wilson, Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function, Journal of Experimental Biology 206(12) (2003) 2049-2057.

DOI: 10.1242/jeb.00241

Google Scholar

[20] E. Sykova, Nicholson, C., Diffusion in brain extracellular space, Physiological Reviews 88(4) (2008) 1277-1340.

DOI: 10.1152/physrev.00027.2007

Google Scholar

[21] I.A. Simpson, A. Carruthers, S.J. Vannucci, Supply and demand in cerebral energy metabolism: The role of nutrient transporters, Journal of Cerebral Blood Flow and Metabolism 27(11) (2007) 1766-1791.

DOI: 10.1038/sj.jcbfm.9600521

Google Scholar

[22] A.G. Lowe, A.R. Walmsley, The kinetics of glucose transport in human red blood cells, BBA - Biomembranes 857(2) (1986) 146-154.

DOI: 10.1016/0005-2736(86)90342-1

Google Scholar

[23] D.e. Dwyer, Glucose metabolism in the brain, International Review of Neurobiology 51 (2002) 1-535.

Google Scholar

[24] S.B. Hladky, M.A. Barrand, Elimination of substances from the brain parenchyma: Efflux via perivascular pathways and via the blood-brain barrier 11 Medical and Health Sciences 1109 Neurosciences, Fluids and Barriers of the CNS 15(1) (2018).

DOI: 10.1186/s12987-018-0113-6

Google Scholar

[25] S.G. Patching, Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery, Molecular Neurobiology 54(2) (2017) 1046-1077.

DOI: 10.1007/s12035-015-9672-6

Google Scholar

[26] S.B. Hladky, Barrand, M.A., Mechanisms of fluid movement into, through and out of the brain: Evaluation of the evidence, Fluids and Barriers of the CNS 11(1) (2014) art. no. 26.

DOI: 10.1186/2045-8118-11-26

Google Scholar

[27] N.J. Abbott, Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology, Neurochemistry International 45(4) (2004) 545-552.

DOI: 10.1016/j.neuint.2003.11.006

Google Scholar

[28] N.J. Abbott, Patabendige, A.A.K., Dolman, D.E.M., Yusof, S.R., Begley, D.J., Structure and function of the blood-brain barrier, Neurobiology of Disease 37(1) (2010) 13-25.

DOI: 10.1016/j.nbd.2009.07.030

Google Scholar

[29] I.Y. Choi, S.P. Lee, S.G. Kim, R. Gruetter, In vivo measurements of brain glucose transport using the reversible michaelis-menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia, Journal of Cerebral Blood Flow and Metabolism 21(6) (2001) 653-663.

DOI: 10.1097/00004647-200106000-00003

Google Scholar

[30] R. Gruetter, K. Ugurbil, E.R. Seaquist, Steady-state cerebral glucose concentrations and transport in the human brain, Journal of Neurochemistry 70(1) (1998) 397-408.

DOI: 10.1046/j.1471-4159.1998.70010397.x

Google Scholar

[31] C. Förster, Tight junctions and the modulation of barrier function in disease, Histochemistry and Cell Biology 130(1) (2008) 55-70.

DOI: 10.1007/s00418-008-0424-9

Google Scholar

[32] X. Jiang, A.V. Andjelkovic, L. Zhu, T. Yang, M.V.L. Bennett, J. Chen, R.F. Keep, Y. Shi, Blood-brain barrier dysfunction and recovery after ischemic stroke, Progress in Neurobiology 163-164 (2018) 144-171.

DOI: 10.1016/j.pneurobio.2017.10.001

Google Scholar

[33] V.I. Skvortsova, Y.R. Nartsissov, M.K. Bodykhov, I.V. Kichuck, N.A. Pryanikova, Y.V. Gudkova, T.D. Soldatenkova, T.T. Kondrashova, E.V. Kalinina, M.D. Novichkova, A.B. Shutyeva, O.B. Kerbikov, Oxidative stress and oxygen status in ischemic stroke, Zhurnal Nevrologii i Psihiatrii imeni S.S. Korsakova 107(1) (2007) 30-36.

Google Scholar

[34] Y. Itoh, N. Suzuki, Control of brain capillary blood flow, Journal of Cerebral Blood Flow and Metabolism 32(7) (2012) 1167-1176.

DOI: 10.1038/jcbfm.2012.5

Google Scholar

[35] G.I. Podoprigora, Y.R. Nartsissov, P.N. Aleksandrov, Effect of glycine on microcirculation in pial vessels of rat brain, Bulletin of experimental biology and medicine 139(6) (2005) 675-677.

DOI: 10.1007/s10517-005-0375-2

Google Scholar

[36] O. Blagosklonov, G.I. Podoprigora, S. Davani, Y.R. Nartsissov, L. Comas, H. Boulahdour, J.C. Cardot, J.M.U.H., FDG-PET scan shows increased cerebral blood flow in rat after sublingual glycine application, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 571(1-2 SPEC. ISS.) (2007) 30-32.

DOI: 10.1016/j.nima.2006.10.022

Google Scholar

[37] Y.R. Nartsissov, E.S. Tyukina, S.E. Boronovsky, E.V. Sheshegova, Computer modeling of spatial-time distribution of metabolite concentrations in phantoms of biological objects by example of rat brain pial, Biophysics (Russian Federation) 58(5) (2013) 703-711.

DOI: 10.1134/s0006350913050102

Google Scholar