[1]
Kizaki T, O M, Kajihara M. Rate-Controlling Process of Compound Growth in Cu-Clad Al Wire during Isothermal Annealing at 483–543 K. Materials Transactions. 2020;61(1):188-194. DOI: https://10.2320/matertrans.MT-M2019207.
DOI: 10.2320/matertrans.mt-m2019207
Google Scholar
[2]
Goh CS, Chong W L E, Lee TK, Breach C. Corrosion Study and Intermetallics Formation in Gold and Copper Wire Bonding in Microelectronics Packaging. Crystals. 2013;3(3):391-404. DOI: https://doi.org/10.3390/cryst3030391.
DOI: 10.3390/cryst3030391
Google Scholar
[3]
Yarmolenko MV. Copper and aluminum electric corrosion investigation and intermetallics disappearance in Cu-Al system analysis. Phys. Chem. Solid St. 2020;21(2):294-299. https://journals.pnu.edu.ua/index.php/pcss/article/view/3055.
DOI: 10.15330/pcss.21.2.294-299
Google Scholar
[4]
Yarmolenko MV. Intermetallics Disappearance Rate Analysis in Double Multiphase Systems. DDF. 2021; 407: 68–86. https://doi.org/10.4028/www.scientific.net/ddf.407.68.
DOI: 10.4028/www.scientific.net/ddf.407.68
Google Scholar
[5]
Włodarczyk PP, Włodarczyk B. Effect of Hydrogen and Absence of Passive Layer on Corrosive Properties of Aluminium Alloys. Materials. 2020; 13(7): 1580-1593. https://doi.org/10.3390/ma13071580.
DOI: 10.3390/ma13071580
Google Scholar
[6]
Kumar S, Handwerker CA, Dayananda MA. Intrinsic and Interdiffusion in Cu-Sn System. JPEDAV. 2011; 32:309-319. (.
DOI: 10.1007/s11669-011-9907-9
Google Scholar
[7]
Tu KN. Electronic Thin-Film Reliability. 1st ed. Cambridge University Press: New York; 2010. 392 p. DOI: https://www.amazon.com/Electronic-Thin-Film-Reliability-King-Ning-Tu-ebook-dp-B00QIT3LXA/dp/B00QIT3LXA/ref=mt_other?_encoding=UTF8&me=&qid=.
DOI: 10.1017/cbo9780511777691
Google Scholar
[8]
Epishin A, Chyrkin A, Camin B, Saillard R, Gouy S, Viguier B. Interdiffusion in CMSX-4 Related Ni-Base Alloy System at a Supersolvus Temperature. DDF. 2021;407:1–10. https://doi.org/10.4028/www.scientific.net/ddf.407.1.
DOI: 10.4028/www.scientific.net/ddf.407.1
Google Scholar
[9]
Prawoto Y. Synergy of erosion and galvanic effects of dissimilar steel welding: Field failure analysis case study and laboratory test results. Journal of King Saud University – Engineering Sciences. 2013; 25: 59–64. https://doi.org/10.1016/j.jksues.2011.12.001.
DOI: 10.1016/j.jksues.2011.12.001
Google Scholar
[10]
Yarmolenko MV. Intrinsic Diffusivities Ratio Analysis in the Al-Cu System. Phys. Chem. Solid St. 2020;21(4):720-726. https://journals.pnu.edu.ua/index.php/pcss/article/view/4440.
DOI: 10.15330/pcss.21.4.720-726
Google Scholar
[11]
Yarmolenko MV. Method of Dislocation and Bulk Diffusion Parameters Determination. Metallofiz. Noveishie Tekhnol. 2020; 42 (11): 1537–1546. https://mfint.imp.kiev.ua/article/v42/i11/MFiNT.42.1537.pdf.
DOI: 10.15407/mfint.42.11.1537
Google Scholar
[12]
Funamizu Y, Watanabe K. Interdiffusion in the Al–Cu System. Transactions of the Japan Institute of Metals. 1971;12(3):147-152. 10.2320/matertrans1960.12.147.
DOI: 10.2320/matertrans1960.12.147
Google Scholar
[13]
Yarmolenko MV. Intermetallics Disappearance Rates and Intrinsic Diffusivities Ratios Analysis in the Cu-Zn and the Cu-Sn Systems. Phys. Chem. Solid St. 2021;22(1):80-87. https://journals.pnu.edu.ua/index.php/pcss/article/view/4744.
DOI: 10.15330/pcss.22.1.80-87
Google Scholar
[14]
Hentzell HTG, Tu KN. Interdiffusion in copper–aluminum thin film bilayers. II. Analysis of marker motion during sequential compound formation. Journal of Applied Physics. 1983; 54: 6929-6937. https://doi.org/10.1063/1.332000.
DOI: 10.1063/1.332000
Google Scholar
[15]
Moisy F, Sauvage X, Hug E. Investigation of the early stage of reactive interdiffusion in the Cu-Al system by in-situ transmission electron microscopy. Materialia. 2020;9: 100633. https://doi.org/10.1016/j.mtla.2020.100633.
DOI: 10.1016/j.mtla.2020.100633
Google Scholar
[16]
Shima Y, Ishikawa Y, Nitta H, Yamazaki Y, Mimura K, Isshiki M, Iijima Y. Self-Diffusion along Dislocations in Ultra High Purity Iron. Materials Transactions. 2002;43(2): 173-177. https://www.jim.or.jp/journal/e/43/02/173.html.
DOI: 10.2320/matertrans.43.173
Google Scholar
[17]
Yarmolenko MV. Intermediate phase cone growth kinetics along dislocation pipes inside polycrystal grains. AIP Advances. 2018;8: 095202. https://doi.org/10.1063/1.5041728.
DOI: 10.1063/1.5041728
Google Scholar
[18]
Yarmolenko MV. Analytically Solvable Differential Diffusion Equations Describing the Intermediate Phase Growth. Metallofiz. Noveishie Tekhnol. 2018; 40(9): 1201-1207. https://mfint.imp.kiev.ua/article/v40/i09/MFiNT.40.1201.pdf.
DOI: 10.15407/mfint.40.09.1201
Google Scholar
[19]
Mehrer H. Diffusion in Solids. New York: Springer; 2007. 651 p. http://users.encs.concordia.ca/~tmg/images/7/79/Diffusion_in_solids_Helmut_Mehrer.pdf.
Google Scholar
[20]
Braunovic M. and Alexandrov N. Intermetallic compounds at aluminum-to-copper electrical interfaces: effect of temperature and electric current. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A. 1994;17(1): 78-85.
DOI: 10.1109/95.296372
Google Scholar
[21]
Darken LS. Diffusion, mobility and their interrelation through free energy in binary metallic systems. Transactions AIME .1948;175: 184-201. http://garfield.library.upenn.edu/classics1979/A1979HJ27500001.pdf.
DOI: 10.1007/s11661-010-0177-7
Google Scholar
[22]
Beverskog B. and Puigdomenech I. Pourbaix diagrams for the system copper-chlorine at 5–100 °C. SKI Rapport 98:19. 1998; 35 p. https://www.stralsakerhetsmyndigheten.se/ contentassets/25fc43163812476fa9375d49b6b4e897/9819-pourbaix-diagrams-for-the-system-copper-chlorine-at-5-100c.
DOI: 10.5006/1.3283945
Google Scholar
[23]
F. J. J. Loo, G. F. Bastin, and J. W. G. A. Vrolijk, Metallurgical and Materials Transactions A, 18, 801 (1987) (https://link.springer.com/article/10.1007/BF02646922).
Google Scholar
[24]
J. E. Morral, Y.-H. Son, M. S. Thompson, Acta Metallurgica, 36 (8), 1971 (1988) (https://doi.org/10.1016/0001-6160(88)90299-4).
DOI: 10.1016/0001-6160(88)90299-4
Google Scholar
[25]
M. V. Yarmolenko, Defect and Diffusion Forum, 143-147, 507 (1997) (https://www.scientific.net/DDF.143-147.509).
DOI: 10.4028/www.scientific.net/ddf.143-147.509
Google Scholar
[26]
V. V. Bogdanov, L. N. Paritskaya, and M. V. Yarmolenko, Metallofizika, 12, No.3, 60 (1990).
Google Scholar
[27]
C. Wagner, Acta Metall., 17(2), 99 (1969) (https://www.sciencedirect.com/science/article/abs/pii/000161606990131X?via%3Dihub).
Google Scholar
[28]
M. Onishi and M. Fujibuchi, Trans. Jpn. Inst. Met., 16, 539 (1975) (https://www.jstage.jst.go.jp/article/matertrans1960/16/9/16_9_539/_pdf/-char/en).
Google Scholar
[29]
A. Paul, C. Ghosh, and W.J. Boettinger, Diffusion Parameters and Growth Mechanism of Phases in the Cu-Sn System, Metallurgical and materials transactions A 42A (2011) 952-963 (.
DOI: 10.1007/s11661-010-0592-9
Google Scholar
[30]
A.D. Smigelkas and E.O. Kirkendall, Zinc diffusion in alpha brass, Trans. AIME 171 (1947) 130-134.
Google Scholar
[31]
Ya.Ye. Geguzin,Yu. Kaganovskii, L.M. Paritskaya, and V.I. Solunskiy, Phys. Met. Metall., 47(4), 127 (1980) (https://www.researchgate.net/publication/292667643_KINETICS_OF_THE_MOTION_OF_THE_ INTERFACE_DURING_MUTUAL_DIFFUSION_IN_A_TWO-COMPONENT_ SYSTEM).
Google Scholar
[32]
O. Liashenko, A. M. Gusak, F. Hodaj, J Mater Sci: Mater Electron, 25(10), 4664 (2014) (DOI 10.1007/s10854-014-2221-7).
Google Scholar
[33]
V. Nikulkina, A.O. Rodin, B. Bokstein, Materials Letters 257, 1265252019 (2019) (.
Google Scholar