Intrinsic Diffusivities Ratio Analysis in Double Multiphase Systems

Article Preview

Abstract:

Our investigations show that electrochemical corrosion of copper is faster than electrochemical corrosion of aluminium at temperatures below 100°C. Literature data analysis shows that the Al atoms diffuse faster than the Cu atoms at temperatures higher than 475°C, Al rich intermetallic compounds (IMCs) are formed faster in the Cu-Al system, and the Kirkendall plane shifts toward the Al side. Electrochemical corrosion occurs due to electric current and due to diffusion. An electronic devise working time, for example, depends on initial copper cover thickness on aluminium wire, connected to the electronic devise, temperature, and volume and dislocation pipe diffusion coefficients, so copper, iron, and aluminium electrochemical corrosion rates are investigated experimentally at room temperature and at temperature 100°C. Intrinsic diffusivities ratios of copper and aluminium at different temperatures and diffusion activation energies in the Cu-Al system are calculated by proposed here methods using literature experimental data. Dislocation pipe and volume diffusion activation energies of pure iron are calculated separately by earlier proposed method using literature experimental data. Aluminium dissolved into NaCl solution as the Al3+ ions at room temperature and at temperature 100°C, iron dissolved into NaCl solution as the Fe2+ (not Fe3+) ions at room temperature and at temperature 100°C, copper dissolved into NaCl solution as the Cu+ ions at room temperature and as the Cu+ and the Cu2+ ions at temperature 100°C. It is found experimentally that copper corrosion is higher than aluminium corrosion, and ratio of electrochemical corrosion rates, kCu/kAl>1, decreases with temperature increasing, although iron electrochemical corrosion rate does not depend on temperature below 100°C. It is obvious, because the melting point of iron is more higher than the melting point of copper or aluminium. It is calculated that the copper electrochemical corrosion rate is approximately equal to aluminium electrochemical corrosion at temperature about 300°C, so copper can dissolve into NaCl solution mostly as the Cu2+ ions at temperature about 300°C. The ratio of intrinsic diffusivities, DCu/DAl<1, increases with temperature increasing, and the intrinsic diffusivity of aluminium could be approximately equal to the intrinsic diffusivity of copper at temperature about 460oC. Intrinsic diffusivities ratios in the Cu-Zn system at temperature 400°C and in the Cu-Sn system at temperatures from 190°C to 250°C are analyzed theoretically using literature experimental data. Diffusion activation energies and pre-exponential coefficients for the Cu-Sn system are calculated combining literature experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-64

Citation:

Online since:

December 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kizaki T, O M, Kajihara M. Rate-Controlling Process of Compound Growth in Cu-Clad Al Wire during Isothermal Annealing at 483–543 K. Materials Transactions. 2020;61(1):188-194. DOI: https://10.2320/matertrans.MT-M2019207.

DOI: 10.2320/matertrans.mt-m2019207

Google Scholar

[2] Goh CS, Chong W L E, Lee TK, Breach C. Corrosion Study and Intermetallics Formation in Gold and Copper Wire Bonding in Microelectronics Packaging. Crystals. 2013;3(3):391-404. DOI: https://doi.org/10.3390/cryst3030391.

DOI: 10.3390/cryst3030391

Google Scholar

[3] Yarmolenko MV. Copper and aluminum electric corrosion investigation and intermetallics disappearance in Cu-Al system analysis. Phys. Chem. Solid St. 2020;21(2):294-299. https://journals.pnu.edu.ua/index.php/pcss/article/view/3055.

DOI: 10.15330/pcss.21.2.294-299

Google Scholar

[4] Yarmolenko MV. Intermetallics Disappearance Rate Analysis in Double Multiphase Systems. DDF. 2021; 407: 68–86. https://doi.org/10.4028/www.scientific.net/ddf.407.68.

DOI: 10.4028/www.scientific.net/ddf.407.68

Google Scholar

[5] Włodarczyk PP, Włodarczyk B. Effect of Hydrogen and Absence of Passive Layer on Corrosive Properties of Aluminium Alloys. Materials. 2020; 13(7): 1580-1593. https://doi.org/10.3390/ma13071580.

DOI: 10.3390/ma13071580

Google Scholar

[6] Kumar S, Handwerker CA, Dayananda MA. Intrinsic and Interdiffusion in Cu-Sn System. JPEDAV. 2011; 32:309-319. (.

DOI: 10.1007/s11669-011-9907-9

Google Scholar

[7] Tu KN. Electronic Thin-Film Reliability. 1st ed. Cambridge University Press: New York; 2010. 392 p. DOI: https://www.amazon.com/Electronic-Thin-Film-Reliability-King-Ning-Tu-ebook-dp-B00QIT3LXA/dp/B00QIT3LXA/ref=mt_other?_encoding=UTF8&me=&qid=.

DOI: 10.1017/cbo9780511777691

Google Scholar

[8] Epishin A, Chyrkin A, Camin B, Saillard R, Gouy S, Viguier B. Interdiffusion in CMSX-4 Related Ni-Base Alloy System at a Supersolvus Temperature. DDF. 2021;407:1–10. https://doi.org/10.4028/www.scientific.net/ddf.407.1.

DOI: 10.4028/www.scientific.net/ddf.407.1

Google Scholar

[9] Prawoto Y. Synergy of erosion and galvanic effects of dissimilar steel welding: Field failure analysis case study and laboratory test results. Journal of King Saud University – Engineering Sciences. 2013; 25: 59–64. https://doi.org/10.1016/j.jksues.2011.12.001.

DOI: 10.1016/j.jksues.2011.12.001

Google Scholar

[10] Yarmolenko MV. Intrinsic Diffusivities Ratio Analysis in the Al-Cu System. Phys. Chem. Solid St. 2020;21(4):720-726. https://journals.pnu.edu.ua/index.php/pcss/article/view/4440.

DOI: 10.15330/pcss.21.4.720-726

Google Scholar

[11] Yarmolenko MV. Method of Dislocation and Bulk Diffusion Parameters Determination. Metallofiz. Noveishie Tekhnol. 2020; 42 (11): 1537–1546. https://mfint.imp.kiev.ua/article/v42/i11/MFiNT.42.1537.pdf.

DOI: 10.15407/mfint.42.11.1537

Google Scholar

[12] Funamizu Y, Watanabe K. Interdiffusion in the Al–Cu System. Transactions of the Japan Institute of Metals. 1971;12(3):147-152. 10.2320/matertrans1960.12.147.

DOI: 10.2320/matertrans1960.12.147

Google Scholar

[13] Yarmolenko MV. Intermetallics Disappearance Rates and Intrinsic Diffusivities Ratios Analysis in the Cu-Zn and the Cu-Sn Systems. Phys. Chem. Solid St. 2021;22(1):80-87. https://journals.pnu.edu.ua/index.php/pcss/article/view/4744.

DOI: 10.15330/pcss.22.1.80-87

Google Scholar

[14] Hentzell HTG, Tu KN. Interdiffusion in copper–aluminum thin film bilayers. II. Analysis of marker motion during sequential compound formation. Journal of Applied Physics. 1983; 54: 6929-6937. https://doi.org/10.1063/1.332000.

DOI: 10.1063/1.332000

Google Scholar

[15] Moisy F, Sauvage X, Hug E. Investigation of the early stage of reactive interdiffusion in the Cu-Al system by in-situ transmission electron microscopy. Materialia. 2020;9: 100633. https://doi.org/10.1016/j.mtla.2020.100633.

DOI: 10.1016/j.mtla.2020.100633

Google Scholar

[16] Shima Y, Ishikawa Y, Nitta H, Yamazaki Y, Mimura K, Isshiki M, Iijima Y. Self-Diffusion along Dislocations in Ultra High Purity Iron. Materials Transactions. 2002;43(2): 173-177. https://www.jim.or.jp/journal/e/43/02/173.html.

DOI: 10.2320/matertrans.43.173

Google Scholar

[17] Yarmolenko MV. Intermediate phase cone growth kinetics along dislocation pipes inside polycrystal grains. AIP Advances. 2018;8: 095202. https://doi.org/10.1063/1.5041728.

DOI: 10.1063/1.5041728

Google Scholar

[18] Yarmolenko MV. Analytically Solvable Differential Diffusion Equations Describing the Intermediate Phase Growth. Metallofiz. Noveishie Tekhnol. 2018; 40(9): 1201-1207. https://mfint.imp.kiev.ua/article/v40/i09/MFiNT.40.1201.pdf.

DOI: 10.15407/mfint.40.09.1201

Google Scholar

[19] Mehrer H. Diffusion in Solids. New York: Springer; 2007. 651 p. http://users.encs.concordia.ca/~tmg/images/7/79/Diffusion_in_solids_Helmut_Mehrer.pdf.

Google Scholar

[20] Braunovic M. and Alexandrov N. Intermetallic compounds at aluminum-to-copper electrical interfaces: effect of temperature and electric current. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A. 1994;17(1): 78-85.

DOI: 10.1109/95.296372

Google Scholar

[21] Darken LS. Diffusion, mobility and their interrelation through free energy in binary metallic systems. Transactions AIME .1948;175: 184-201. http://garfield.library.upenn.edu/classics1979/A1979HJ27500001.pdf.

DOI: 10.1007/s11661-010-0177-7

Google Scholar

[22] Beverskog B. and Puigdomenech I. Pourbaix diagrams for the system copper-chlorine at 5–100 °C. SKI Rapport 98:19. 1998; 35 p. https://www.stralsakerhetsmyndigheten.se/ contentassets/25fc43163812476fa9375d49b6b4e897/9819-pourbaix-diagrams-for-the-system-copper-chlorine-at-5-100c.

DOI: 10.5006/1.3283945

Google Scholar

[23] F. J. J. Loo, G. F. Bastin, and J. W. G. A. Vrolijk, Metallurgical and Materials Transactions A, 18, 801 (1987) (https://link.springer.com/article/10.1007/BF02646922).

Google Scholar

[24] J. E. Morral, Y.-H. Son, M. S. Thompson, Acta Metallurgica, 36 (8), 1971 (1988) (https://doi.org/10.1016/0001-6160(88)90299-4).

DOI: 10.1016/0001-6160(88)90299-4

Google Scholar

[25] M. V. Yarmolenko, Defect and Diffusion Forum, 143-147, 507 (1997) (https://www.scientific.net/DDF.143-147.509).

DOI: 10.4028/www.scientific.net/ddf.143-147.509

Google Scholar

[26] V. V. Bogdanov, L. N. Paritskaya, and M. V. Yarmolenko, Metallofizika, 12, No.3, 60 (1990).

Google Scholar

[27] C. Wagner, Acta Metall., 17(2), 99 (1969) (https://www.sciencedirect.com/science/article/abs/pii/000161606990131X?via%3Dihub).

Google Scholar

[28] M. Onishi and M. Fujibuchi, Trans. Jpn. Inst. Met., 16, 539 (1975) (https://www.jstage.jst.go.jp/article/matertrans1960/16/9/16_9_539/_pdf/-char/en).

Google Scholar

[29] A. Paul, C. Ghosh, and W.J. Boettinger, Diffusion Parameters and Growth Mechanism of Phases in the Cu-Sn System, Metallurgical and materials transactions A 42A (2011) 952-963 (.

DOI: 10.1007/s11661-010-0592-9

Google Scholar

[30] A.D. Smigelkas and E.O. Kirkendall, Zinc diffusion in alpha brass, Trans. AIME 171 (1947) 130-134.

Google Scholar

[31] Ya.Ye. Geguzin,Yu. Kaganovskii, L.M. Paritskaya, and V.I. Solunskiy, Phys. Met. Metall., 47(4), 127 (1980) (https://www.researchgate.net/publication/292667643_KINETICS_OF_THE_MOTION_OF_THE_ INTERFACE_DURING_MUTUAL_DIFFUSION_IN_A_TWO-COMPONENT_ SYSTEM).

Google Scholar

[32] O. Liashenko, A. M. Gusak, F. Hodaj, J Mater Sci: Mater Electron, 25(10), 4664 (2014) (DOI 10.1007/s10854-014-2221-7).

Google Scholar

[33] V. Nikulkina, A.O. Rodin, B. Bokstein, Materials Letters 257, 1265252019 (2019) (.

Google Scholar