Diffusion in Metallic Glasses and in Oxide Glasses - An Overview

Article Preview

Abstract:

We remind the reader to some common features of metallic and oxide glasses. We then introduce the radiotracer method for diffusion studies, which can be applied for both types of glasses. We provide an overview on diffusion in metallic glasses in which we consider both types of metallic glasses – conventional and bulk metallic glasses. In the last part we discuss diffusion and ionic conduction in oxide glasses. For ionic glasses, conductivity measurements are an important complement to tracer diffusion studies. We remind the reader to the method of impedance spectroscopy. We discuss results for soda-lime silicate glasses, single alkali borate glasses and mixed alkali borate glasses and present evidence for collective jump processes in glasses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-124

Citation:

Online since:

December 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Mehrer, Diffusion in Solids -- Fundamentals, Methods, Maaterials, Diffusion-controlled processes, Springer Series of Solid State Sciences 155, Springer (2007).

DOI: 10.1007/978-3-540-71488-0

Google Scholar

[2] A.W. Imre, S. Voss, H. Mehrer, Phys. Chem. Chem. Phys. 4, 3219 (2002).

Google Scholar

[3] E. M. Tanguep-Nijokep, H. Mehrer, Solid State Ionics 177, 2839 (2006).

Google Scholar

[4] J. Horvath, H. Mehrer, Cryst. Latt. Defects and Amorph. Materials 13, 1 (1986).

Google Scholar

[5] F. Faupel, W. Frank, H.-P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H. Schober, S. Sharma, H. Teichler, Diffusion in Metallic Glasses and Undercooled Melts, Review of Modern Physics 75, 1 (2003).

DOI: 10.1103/revmodphys.75.237

Google Scholar

[6] A. Peker, W. L. Johnson, Appl. Phys. Letters 63, 2342 (1993).

Google Scholar

[7] W. L. Johnson , Mat. Res. Soc. Symp. Proc. 554, 311 (1999).

Google Scholar

[8] R. Busch, W. L. Johnson, Mater. Sci. Forum 269-272, 577 (1998).

Google Scholar

[9] P. Fielitz, M.-P. Macht, V. Naundorf, G. Frohberg, J. Non-Cryst. Solids 250 - 252, 674 (1999).

DOI: 10.1016/s0022-3093(99)00158-1

Google Scholar

[10] Th. Zumkley, M.-P. Macht, G. Frohberg, Scripta Mater. 45, 471 (2001).

Google Scholar

[11] H. Ehmler, A. Heesemann, K. Rätzke, F. Faupel, Phys. Rev. Letters 84, 1467 (2000).

Google Scholar

[12] H. Ehmler, K. Rätzke, F. Faupel, J. Non-Cryst. Solids 250-252, 684 (1999).

DOI: 10.1016/s0022-3093(99)00160-x

Google Scholar

[13] H. Teichler, J. Non-Cryst. Solids 293, 339 (2001).

Google Scholar

[14] F. Berkemeier, D. Voss, A.W. Imre, H. Mehrer, J. Non-Cryst. Solids 351, 3816 (2005).

Google Scholar

[15] Y. Gao, C. Cramer, Solid State Ionics 176, 921 (2005).

Google Scholar