Study on the Wear of Cutting-Tools Used in Dry Machining of Cu-10wt%Al-5wt%Ni-5wt%Fe Alloy

Article Preview

Abstract:

Aluminium bronze alloys are special copper alloys that have a machinability rate from 20 to 40% compared to free cutting brasses, so the cutting parameters and type of tools suitable for machining of these materials may be very different for other copper alloys. Also, due to the relative high costs of the raw material, the absence of contamination of the chips by cutting fluids improve its intrinsic resales value and encourage the use of machining process without coolant. The aim of this work is to evaluate the tool wear mechanisms in the finishing machining of the Cu-10wt%Al-5wt%Ni-5wt%Fe aluminium-bronze alloy with carbide and cermet inserts at different cutting speeds under dry machining condition. The turning of material showed lower surface roughness in higher speed conditions and better dimensional stability at lower speeds. It was observed the formation of continuous chips, but of little volume occupied. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses of tool wear show the adhesion as the main tool wear mechanism, followed by abrasion. At the lower cutting speed, the adhesion wears affected significantly the surface finish, reducing the tool life in comparison to the higher speeds.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] M.S. Nascimento, C. Frajuca, F.Y. Nakamoto, G.A. Santos, A.A. Couto: Matéria Vol. 22 (1) (2017). ISSN 1517-7076 artigo e11774. https://doi.org/10.1590/S1517-707620170001.0106.

DOI: 10.1590/s1517-707620170001.0106

Google Scholar

[2] M.S. Nascimento, A.T.R. Franco, C. Frajuca, F.Y. Nakamoto, G.A. Santos, A.A Couto: Materials Research Vol. 21 (5) (2018). https://doi.org/10.1590/1980-5373-MR-2017-0864.

Google Scholar

[3] Nascimento MS, Santos GAd, Teram R, Santos VTd, Silva MRd, Couto AA. Effects of Thermal Variables of Solidification on the Microstructure, Hardness, and Microhardness of Cu-Al-Ni-Fe Alloys. Materials. (2019); 12(8):1267. https://doi.org/10.3390/ma12081267.

DOI: 10.3390/ma12081267

Google Scholar

[4] Santos GA, Ribeiro AN, Nascimento MS, Frajuca C, Nakamoto FY, Silva MR, et al. Influence of the thermal parameters on the microstructure, corrosion resistance and hardness on the unidirectional solidification of al-10wt% si-5wt% cu alloy. Mater Sci Forum 2020;1012 MSF:308-313.

DOI: 10.4028/www.scientific.net/msf.1012.308

Google Scholar

[5] Cruz RA, Santos GA, Nascimento MS, Frajuca C, Nakamoto FY, da Silva MR, et al. Microstructural characterization and mathematical modeling for determination of volume fraction of eutectoid mixture of the cu-8.5wt% sn alloy obtained by unidirectional upward solidification. Mater Sci Forum 2020;1012 MSF:302-307.

DOI: 10.4028/www.scientific.net/msf.1012.302

Google Scholar

[6] I. Richardson, Guide to Nickel Aluminium Bronze for Engineers. Copper Development Association publication Nº222, (2016).

Google Scholar

[7] F. Hasan, A. Jahanafrooz, G.W. Lorimer, N. Ridley, The Morphology, Crystallography, and Chemistry of Phases in As-Cast Nickel-Aluminium Bronze, Met.Trans. A, v. 13a, pp.1337-1345, (1982).

DOI: 10.1007/bf02642870

Google Scholar

[8] Y. Li, T. L. NGAI, W. Xia, Y. Long, D. Zhang, A study of aluminum bronze adhesion on tools during turning. Journal of materials processing technology, v. 138, n. 1-3, pp.479-483, (2003).

DOI: 10.1016/s0924-0136(03)00123-7

Google Scholar

[9] A. E. Diniz, A rugosidade superficial da peça em processos de torneamento: critérios de fim de vida da ferramenta e fatores de influência, (1989).

DOI: 10.47749/t/unicamp.1989.47604

Google Scholar

[10] K. G. Shashi, N. D. Prasanna, machinability studies on copper based alloy-optimization of control parameters in turning operation using Taguchi method. International journal of engineering research & technology (IJERT), ISSN: 2278-0181, Vol. 2 Issue 7, (2013).

Google Scholar

[11] J. Paulo Davim, V.N. Gaitonde, S.R. Karnik, Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models, Journal of Materials Processing Technology, Volume 205, Issues 1–3, 2008, Pages 16-23.

DOI: 10.1016/j.jmatprotec.2007.11.082

Google Scholar

[12] Vikram, K. A., Ratnam, C., Narayana, K. S., & Ben, B. S. (2015). Assessment of surface roughness and MRR while machining brass with HSS tool and carbide inserts, Indian Journal of Engineering and Materials Sciences, 1 June 2015, Vol.22(3), pp.321-330.

Google Scholar

[13] Fu, X., Zou, B., Liu, Y., Huang, C., & Yao, P. (2019). Edge micro-creation of Ti (C, N) cermet inserts by micro-abrasive blasting process and its tool performance. Machining Science and Technology, 23(6), 951-970.

DOI: 10.1080/10910344.2019.1636275

Google Scholar

[14] Zhao, T., Zhou, J. M., Bushlya, V., & Ståhl, J. E. (2017). Effect of cutting-edge radius on surface roughness and tool wear in hard turning of AISI 52100 steel. The International Journal of Advanced Manufacturing Technology, 91(9), 3611-3618.

DOI: 10.1007/s00170-017-0065-z

Google Scholar

[15] Wang, W., Saifullah, M. K., Aßmuth, R., Biermann, D., Arif, A. F. M., & Veldhuis, S. C. (2020). Effect of edge preparation technologies on cutting edge properties and tool performance. The International Journal of Advanced Manufacturing Technology, 106(5), 1823-1838.

DOI: 10.1007/s00170-019-04702-1

Google Scholar

[16] Denkena, B., and D. Biermann. Cutting edge geometries." CIRP annals 63.2 (2014): 631-653. [17] Wyen, C-F., and Konrad Wegener. "Influence of cutting edge radius on cutting forces in machining titanium., CIRP annals 59.1 (2010): 93-96.

DOI: 10.1016/j.cirp.2010.03.056

Google Scholar

[18] Konopka, John. Options for quantitative analysis of light elements by SEM/EDS., Technical Note 52523 (2013).

Google Scholar