Precipitation Effects in Cast, Heat-Treated and Cold-Rolled Aluminium AA7075 Alloy with Sc,Zr-Addition

Article Preview

Abstract:

The commercial Al–Zn–Mg–Cu-based alloys (7xxx series) are widely used in metalworking, automotive and aircraft industries as well as in aeronautical applications. The positive effect of the Sc,Zr-addition on mechanical properties of laboratory Al-based alloys is generally known. The microstructure, mechanical and thermal properties of the conventionally cast, heat-treated and cold-rolled Al–Zn–Mg–Cu (–Sc–Zr) alloys during isochronal annealing and natural ageing were studied. Microstructure observation by scanning electron microscopy and transmission electron microscopy proved the Zn,Mg,Cu-containing eutectic phase at grain boundaries. The distinct changes in microhardness curves as well as in a heat flow of the alloys studied are mainly caused by dissolution of the clusters/Guinier-Preston (GP) zones and precipitation of particles from the Al–Zn–Mg–Cu system. An easier diffusion of Zn, Mg and Cu atoms along dislocations in the cold-rolled alloys is responsible for the precipitation of the Zn,Mg,Cu-containing particles at lower temperatures compared to the cast alloys. Microhardness values of the heat-treated alloys increase immediately from the beginning of natural ageing due to the formation of the clusters/GP zones. Addition of Sc and Zr elements results in a higher hardness above ~ 270 °C due to a strengthening by coherent secondary Al3(Sc,Zr) particles with a good thermal stability. Sc,Zr-addition has probably no influence on the evolution of the solute clusters/GP zones.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] T. Dursun, C. Soutis: Mater. Des. 56 (2014), p.862.

Google Scholar

[2] K. R. Prasanta, M. M. Ghosh, K. S. Ghosh: Mater. Charact. 104 (2015), p.49.

Google Scholar

[3] N. Afify, A. Gaber, G. Abbady: Mater. Sci. App. 2 (2011) 5, p.427.

Google Scholar

[4] K. S. Ghosh, N. Gao, M. J. Starink: Mater. Sci. Eng. A 552 (2012), p.164.

Google Scholar

[5] K. S. Ghosh, N. Gao: Trans. Non. Met. Soc. China 21 (2011) 6, p.1199.

Google Scholar

[6] C. Antonione, F. Marino, G. Riontino: Mater. Chem. Phys. 20 (1988), p.13.

Google Scholar

[7] S. Abis, G. Riontino: Mater. Lett., 5 (1987) 11–12, p.442.

Google Scholar

[8] M. Vlach, V. Kodetová, B. Smola, J. Čížek, T. Kekule, M. Cieslar, H. Kudrnová, L. Bajtošová, M. Leibner, I. Procházka: Kovové Mater.-Metallic Mater. 56 (2018) 6, p.367.

DOI: 10.4149/km_2018_6_367

Google Scholar

[9] M. J. Starink, S. C. Wang: Acta Mater. (2003), p.5131.

Google Scholar

[10] X. B. Yang, J. H. Chen, J. Z. Liu, F. Qin, J. Xie, C. L. Wu: J. Alloys Compd. (2014), p.69.

Google Scholar

[11] P. Priya, D.R. Johnson, M.J.M. Krane, Comp. Mater. Sci. (2017), p.273.

Google Scholar

[12] L. S. Toropova, D. G. Eskin, M. L. Kharakterova and T. V. Dobatkina in: Advanced Aluminium Alloys Containing Scandium – Structure and Properties, Gordon and Breach Science Publisher, The Netherlands (1998).

DOI: 10.4324/9781315097541

Google Scholar

[13] M. Vlach, I. Stulíková, B. Smola, T. Kekule, H. Kudrnova, V. Kodetova, V. Ocenasek, J. Malek and V. Neubert: Kovové Materiály-Metallic Materials, 53 (2015) 5, p.295.

DOI: 10.4028/www.scientific.net/ddf.354.93

Google Scholar

[14] N. Q. Vo, D. C. Dunand and D. N. Seidman: Mater. Sci. Eng. A 677 (2016), p.485.

Google Scholar

[15] Ch. Booth-Morrison, D. C. Dunand and D. N. Seidman: Acta Mater 59 (2011), p.7029.

Google Scholar

[16] H. Jo, S. I. Fujikawa: Mater. Sci. Eng. A 171 (1993), p.151.

Google Scholar

[17] M. Vlach, B. Smola, I. Stulikova et al.: Defect and Diffusion Forum 380 (2017), p.161.

Google Scholar

[18] M. Vlach, J. Čížek, B. Smola et al.: Mater. Charact. 129 (2017), p.1.

Google Scholar

[19] V. Kodetova, M. Vlach, J. Cizek, M. Cieslar, L. Bajtosova, H. Kudrnova, M. Leibner, V. Sima: Acta Phys. Pol. A 137 (2020) 2, p.250.

DOI: 10.1016/j.matdes.2020.108821

Google Scholar

[20] F. Bečvář, J. Čížek, I. Procházka, J. Janotová: Nucl. Inst. Methods Phys. Res. A 539 (2005) 1–2, p.372.

Google Scholar

[21] J. Čížek, M. Vlček, I. Procházka: Nucl. Instrum. Methods Phys. Res. A 623 (2010) 3, p.982.

Google Scholar

[22] G. Dlubek, R. Krause, O. Brommer: J. Mater. Sci. 21 (1986), p.853.

Google Scholar