[1]
KENNARD, E.H. Kinetic Theory of Gases, MCGraw-Hill, New York, 1938, pp.295-315.
Google Scholar
[2]
HOOPER, W. B., CHEN, T. S., et ARMALY, Bassem F. Mixed convection from a vertical plate in porous media with surface injection or suction. Numerical Heat Transfer, 1994, vol. 25, no 3, pp.317-329.
DOI: 10.1080/10407789408955951
Google Scholar
[3]
BANSOD, V. J. The effects of blowing and suction on double diffusion by mixed convection over inclined permeable surfaces. Transport in porous media, 2005, vol. 60, no 3, pp.301-317.
DOI: 10.1007/s11242-004-6143-3
Google Scholar
[4]
CHAMKHA, Ali J. Non‐similar solutions for heat and mass transfer by hydro‐magnetic mixed convection flow over a plate in porous media with surface suction or injection. International Journal of Numerical Methods for Heat & Fluid Flow, 2000, Vol. 10, no 2, pp.142-162.
DOI: 10.1108/09615530010312301
Google Scholar
[5]
MUTHUKUMARAN, Chandrasekar et BATHRINATHAN, Kalidoss. Mathematical Modeling of Mixed Convection Boundary Layer Flows over a Stretching Sheet with Viscous Dissipation in Presence of Suction and Injection. Symmetry, 2020, vol. 12, no 11, p.1754.
DOI: 10.3390/sym12111754
Google Scholar
[6]
DUWAIRI, H. M. et DAMSEH, Rebhi A. Thermophoresis particle deposition—thermal radiation interaction on mixed convection from vertical surfaces embedded in porous medium. Canadian Journal of Physics, 2009, vol. 87, no 2, pp.161-167.
DOI: 10.1139/p08-128
Google Scholar
[7]
DAS, K. Effects of thermophoresis and thermal radiation on MHD mixed convective heat and mass transfer flow. Afrika Matematika, 2013, vol. 24, no 4, pp.511-524.
DOI: 10.1007/s13370-012-0077-7
Google Scholar
[8]
MUHAIMIN, Ismoen, KANDASAMY, Ramasamy, KHAMIS, Azme B., et al. Effect of thermophoresis particle deposition and chemical reaction on unsteady MHD mixed convective flow over a porous wedge in the presence of temperature-dependent viscosity. Nuclear Engineering and Design, 2013, vol. 261, pp.95-106.
DOI: 10.1016/j.nucengdes.2013.03.015
Google Scholar
[9]
CHAMKHA, Ali J. et ISSA, Camille. Effects of heat generation/absorption and thermophoresis on hydromagnetic flow with heat and mass transfer over a flat surface. International Journal of Numerical Methods for Heat & Fluid Flow, 2000, Vol. 10, no 4, pp.432-448.
DOI: 10.1108/09615530010327404
Google Scholar
[10]
ALAM, Md S., RAHMAN, M. M., et SATTAR, Md A. Similarity solutions for hydromagnetic free convective heat and mass transfer flow along a semi-infinite permeable inclined flat plate with heat generation and thermophoresis. Nonlinear Analysis: Modelling and Control, 2007, vol. 12, no 4, pp.433-445.
DOI: 10.15388/na.2007.12.4.14675
Google Scholar
[11]
KISHAN, N. et JAGADHA, S. Influence of thermophoresis on heat and mass transfer under non-Darcy MHD mixed convection along a vertical flat plate embedded in a porous medium in the presence of radiation. Thermophysics and Aeromechanics, 2016, vol. 23, no 1, pp.97-108.
DOI: 10.1134/s0869864316010108
Google Scholar
[12]
MONDAL, Hiranmoy, PAL, Dulal, CHATTERJEE, Sewli, et al. Thermophoresis and Soret-Dufour on MHD mixed convection mass transfer over an inclined plate with non-uniform heat source/sink and chemical reaction. Ain Shams Engineering Journal, 2018, vol. 9, no 4, pp.2111-2121.
DOI: 10.1016/j.asej.2016.10.015
Google Scholar
[13]
KUNDU, P. K., DAS, K., et JANA, S. Combined effects of thermophoresis and chemical reaction on magnetohydrodynamics mixed convection flow. Journal of thermophysics and heat transfer, 2013, vol. 27, no 4, pp.741-747.
DOI: 10.2514/1.t3994
Google Scholar
[14]
MUHAIMIN, Ismoen, KANDASAMY, Ramasamy, et HASHIM, Ishak. Thermophoresis and chemical reaction effects on MHD mixed convective heat and mass transfer past a porous wedge with variable viscosity in the presence of viscous dissipation. International Journal for Computational Methods in Engineering Science and Mechanics, 2009, vol. 10, no 3, pp.231-240.
DOI: 10.1080/15502280902814051
Google Scholar
[15]
SINGH, N. P., SINGH, Ajay Kumar, SINGH, Atul Kumar, et al. Effects of thermophoresis on hydromagnetic mixed convection and mass transfer flow past a vertical permeable plate with variable suction and thermal radiation. Communications in Nonlinear Science and Numerical Simulation, 2011, vol. 16, no 6, pp.2519-2534.
DOI: 10.1016/j.cnsns.2010.09.010
Google Scholar
[16]
PATEL, Harshad R. et SINGH, Rajiv. Thermophoresis, Brownian motion and non-linear thermal radiation effects on mixed convection MHD micropolar fluid flow due to nonlinear stretched sheet in porous medium with viscous dissipation, joule heating and convective boundary condition. International Communications in Heat and Mass Transfer, 2019, vol. 107, pp.68-92.
DOI: 10.1016/j.icheatmasstransfer.2019.05.007
Google Scholar
[17]
MITTAL, Akhil S. et PATEL, Harshad R. Influence of thermophoresis and Brownian motion on mixed convection two dimensional MHD Casson fluid flow with non-linear radiation and heat generation. Physica A: Statistical Mechanics and its Applications, 2020, vol. 537, p.122710.
DOI: 10.1016/j.physa.2019.122710
Google Scholar
[18]
PAL, Dulal et MONDAL, Hiranmoy. Influence of Soret-Dufour and thermophoresis on hydromagnetic mixed convection heat and mass transfer over an inclined flat plate with non-uniform heat source/sink and chemical reaction. International Journal for Computational Methods in Engineering Science and Mechanics, 2018, vol. 19, no 2, pp.49-60.
DOI: 10.1080/15502287.2018.1430073
Google Scholar
[19]
BUONGIORNO, Jacopo. Convective transport in nanofluids, 2006, Vol. 128, pp.204-250.
Google Scholar
[20]
PRASAD, K. V., VAJRAVELU, K., SHIVAKUMARA, I. S., et al. Flow and heat transfer of a Casson Nanofluid over a nonlinear stretching sheet. Journal of Nanofluids, 2016, vol. 5, no 5, pp.743-752.
DOI: 10.1166/jon.2016.1255
Google Scholar
[21]
PRASAD, K. V., VAJRAVELU, K., et VAIDYA, Hanumesh. MHD Casson nanofluid flow and heat transfer at a stretching sheet with variable thickness. Journal of Nanofluids, 2016, vol. 5, no 3, pp.423-435.
DOI: 10.1166/jon.2016.1228
Google Scholar
[22]
PRASAD, K. V., VAIDYA, H., et VAJRAVELU, K. MHD Mixed Convection Heat Transfer in a Vertical Channel with Temperature-Dependent Transport Properties. Journal of Applied Fluid Mechanics, 2015, vol. 8, no 4. P. 693-701.
DOI: 10.18869/acadpub.jafm.67.223.21562
Google Scholar
[23]
VAIDYA, Hanumesh, PRASAD, K. V., VAJRAVELU, K., et al. Buongiorno model for MHD nanofluid flow between rotating parallel plates in the presence of variable liquid properties. Journal of nanofluids, 2019, vol. 8, no 2, pp.399-406.
DOI: 10.1166/jon.2019.1594
Google Scholar
[24]
AGHA, Hamza Ali, BOUAZIZ, Mohamed Najib, et HANINI, Salah. Free convection boundary layer flow from a vertical flat plate embedded in a Darcy porous medium filled with a nanofluid: effects of magnetic field and thermal radiation. Arabian Journal for Science and Engineering, 2014, vol. 39, no 11, pp.8331-8340.
DOI: 10.1007/s13369-014-1405-z
Google Scholar
[25]
AGHA, H. Ali, BOUAZIZ, M. N., et HANINI, S. Magnetohydrodynamic, thermal radiation and convective boundary effects of free convection flow past a vertical plate embedded in a porous medium saturated with a nanofluid. Journal of Mechanics, 2015, vol. 31, no 5, p.607.
DOI: 10.1017/jmech.2015.28
Google Scholar
[26]
BOUAZIZ, A. M. et HANINI, S. Double dispersion for double diffusive boundary layer in non-Darcy saturated porous medium filled by a nanofluid. Journal of Mechanics, 2016, vol. 32, no 4, pp.441-451.
DOI: 10.1017/jmech.2016.18
Google Scholar
[27]
TAYEB, Mhamed et BOUAZIZ, Mohamed Najib. Deep Investigation on Natural Convection Flow of a Couple Stress Fluid with Nanoparticles in an MHD Vertical Porous Channel with Convective Boundary Conditions. International Journal of Heat and Technology, 2020, Vol. 38, no. 2, pp.487-498.
DOI: 10.18280/ijht.380226
Google Scholar
[28]
VAIDYA, Hanumesh, RAJASHEKHAR, C., MANJUNATHA, G., et al. Heat and mass transfer analysis of MHD peristaltic flow through a complaint porous channel with variable thermal conductivity. Physica Scripta, 2020, vol. 95, no 4, p.045219.
DOI: 10.1088/1402-4896/ab681a
Google Scholar
[29]
VAIDYA, Hanumesh, RAJASHEKHAR, Choudhari, MANJUNATHA, Gudekote, et al. Effects of Heat Transfer on Peristaltic Transport of a Bingham Fluid through an Inclined Tube with Different Wave Forms. Defect and Diffusion Forum. Trans Tech Publications Ltd, 2019, Vol. 392, pp.158-177.
DOI: 10.4028/www.scientific.net/ddf.392.158
Google Scholar
[30]
BUTCHER, John Charles. Numerical methods for ordinary differential equations. John Wiley & Sons, (2016).
Google Scholar
[31]
HAIRER, E., NØRSETT, S. Paul, et WANNER, G. Solving Ordinary Differential Equations I, Nonstiff Problems. 1993. Springer-Verlag, Berlin, DOI, vol. 10, pp.978-3.
Google Scholar
[32]
SUN, Geng. A simple way constructing symplectic Runge-Kutta methods. Journal of Computational Mathematics, 2000, pp.61-68.
Google Scholar
[33]
KIERZENKA, Jacek et SHAMPINE, Lawrence F. A BVP solver based on residual control and the Maltab PSE. ACM Transactions on Mathematical Software (TOMS), 2001, vol. 27, no 3, pp.299-316.
DOI: 10.1145/502800.502801
Google Scholar
[34]
WHITE, Frank M. et CORFIELD, Isla. Viscous fluid flow. New York : McGraw-Hill, 2006, p.233.
Google Scholar
[35]
MILLS, A. F., XU, Hang, et AYAZI, F. The effect of wall suction and thermophoresis on aerosol particle deposition from a laminar boundary layer on a flat plate. International Journal of Heat and Mass Transfer, 1984, vol. 27, no 7, pp.1110-1113.
DOI: 10.1016/0017-9310(84)90127-3
Google Scholar
[36]
TSAI, R. A simple approach for evaluating the effect of wall suction and thermophoresis on aerosol particle deposition from a laminar flow over a flat plate. International communications in heat and mass transfer, 1999, vol. 26, no 2, pp.249-257.
DOI: 10.1016/s0735-1933(99)00011-1
Google Scholar
[37]
SELIM, A., HOSSAIN, M. A., et REES, D. A. S. The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis. International Journal of Thermal Sciences, 2003, vol. 42, no 10, pp.973-982.
DOI: 10.1016/s1290-0729(03)00075-9
Google Scholar
[38]
VAJRAVELU, Kuppalapalle et PRASAD, Kerehalli V. Keller-box method and its application. Walter de Gruyter GmbH & Co KG, (2014).
Google Scholar
[39]
SALAHUDDIN, T. Carreau fluid model towards a stretching cylinder: Using Keller box and shooting method. Ain Shams Engineering Journal, 2020, vol. 11, no 2, pp.495-500.
DOI: 10.1016/j.asej.2017.03.016
Google Scholar
[40]
NAWAZ, Yasir et SHOAIB ARIF, Muhammad. Keller-Box shooting method and its application to nanofluid flow over convectively heated sheet with stability and convergence. Numerical Heat Transfer, Part B: Fundamentals, 2019, vol. 76, no 3, pp.152-180.
DOI: 10.1080/10407790.2019.1644924
Google Scholar
[41]
AYDIN, Orhan et KAYA, Ahmet. Radiation effect on MHD mixed convection flow about a permeable vertical plate. Heat and Mass Transfer, 2008, vol. 45, no 2, pp.239-246.
DOI: 10.1007/s00231-008-0428-y
Google Scholar