Effect of the Spacing Design of Two Alternate Baffles on the Performance of Heat Exchangers

Article Preview

Abstract:

The present study investigates numerically the heat transfer process based forced convective flow of an incompressible fluid in a two-dimensional rectangular channel. Two baffles are imposed periodically on the lower and upper walls. The study mainly focused on the influence of the arrangement and spacing separating the baffles on the heat transfer's intensification. The values of the Reynolds number for the present turbulent flow regime were chosen in the range of 104 to 8.73 × 104. The equations resulting from the three conservation laws, namely continuity, Navier-Stokes, and energy equations, are solved numerically based on the finite volume method. SIMPLE algorithm is used to overcome the pressure-velocity coupling, and k-ε model is used for the computation of turbulent patterns. Numerical simulations are carried out to study the dynamic and thermal behavior influenced by the control parameters. The physical quantities calculated are the axial velocity, the local, mean Nusselt numbers and the friction coefficient. The obtained results show that the friction coefficient decreases proportionally with the increase of Re number, and the local Nusselt number increases with the Reynolds number. As the spacing between the baffles decreases, the NR ratio increases, and as the Reynolds number increases, NR decreases NR = 6.13, 5.31, 4.62, and 4.30 for case P1, NR = 5.1, 4.5, 3.89, and 3.64, for case P2, NR = 5.00, 4.45, 8.83, and 3.51, for case P3, for equal Reynolds number, 104, 2×104, 4×104, 8.73×104, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-72

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. E. Salhi, Y. ES-Sabry, H. El Hour, N. Salhi, Numerical analysis of the thermal performance of a nanofluid water-Al2O3 in a heat sink with rectangular microchannel, 2nd International conference on Electronics, Control, Optimization and Computer Science. IEEE. (2020) 1-6.

DOI: 10.1109/icecocs50124.2020.9314421

Google Scholar

[2] S. Gururatana, Heat transfer augmentation for electronic cooling, American Journal of Applied Sciences. 9 (2012) 436-439.

Google Scholar

[3] J. E. Salhi, N. Salhi, Three-Dimensional Analysis of the Effect of Transverse Spacing between Perforations of a Deflector in a Heat Exchanger, International Conference on Electronic Engineering and Renewable Energy Springer. (2020) 719-728.

DOI: 10.1007/978-981-15-6259-4_75

Google Scholar

[4] B. J. R. Bose, L. G. Asirvatham, M. N. Kumar, Experimental Convective Heat Transfer Studies on Graphene Nanofluid for the Cooling of Next Generation Electronic Components, International Journal of Applied Engineering Research. 12 (2017) 8534-8539.

Google Scholar

[5] J. E. Salhi, T. Zarrouk, N. Salhi, Numerical analysis of the properties of nanofluids and their impact on the thermohydrodynamic phenomenon in a heat exchanger. Materials Today: Proceedings. 45 (2021) 7559-7565.

DOI: 10.1016/j.matpr.2021.02.365

Google Scholar

[6] S.V. Patankar, E. M. Sparrow, Fully developed flow and heat transfer in ducts having stream wise-periodic variations of cross-sectional area, Journal of Heat Transfer, 99 (1977) 180-186.

DOI: 10.1115/1.3450666

Google Scholar

[7] C. Chin-Hsiang, H. Wen-Hsiung, Numerical prediction for laminar forced convection in parallel-plate channels with transverse fin arrays, International journal of heat and mass transfer. 34 (1991) 2739-2749.

DOI: 10.1016/0017-9310(91)90232-4

Google Scholar

[8] P. Promvonge, S. Sripattanapipat, S. Kwankaomeng, Laminar periodic flow and heat transfer in square channel with 45 inline baffles on two opposite walls, International Journal of Thermal Sciences. 49 (2010) 963-975.

DOI: 10.1016/j.ijthermalsci.2010.01.005

Google Scholar

[9] P. Promvonge, S. Sripattanapipat, S. Tamna, S. Kwankaomeng, C. Thianpong, Numerical investigation of laminar heat transfer in a square channel with 45° inclined baffles, International Communications in Heat and Mass Transfer. 37, 2. (2010) 170-177.

DOI: 10.1016/j.icheatmasstransfer.2009.09.010

Google Scholar

[10] S. S. Mousavi, K. Hooman, Heat and fluid flow in entrance region of a channel with staggered baffles, Energy Conversion and Management. 47, 15, 16. (2006) 2011-2019.

DOI: 10.1016/j.enconman.2005.12.018

Google Scholar

[11] M. A. Ismael, Forced convection in partially compliant channel with two alternated baffles, International Journal of Heat and Mass Transfer. 142 (2019) 118455.

DOI: 10.1016/j.ijheatmasstransfer.2019.118455

Google Scholar

[12] Y. Menni, A. Azzi, A. J. Chamkha, S. Harmand, Effect of wall-mounted V-baffle position in a turbulent flow through a channel: Analysis of best configuration for optimal heat transfer, Int. J. Numer, Methods Heat Fluid Flow. 29, 10. (2019) 3908–3937.

DOI: 10.1108/hff-06-2018-0270

Google Scholar

[13] Y. Ahmed, R. Saim, Comparative numerical study of turbulent forced convection in a shell and tube heat exchanger between the simple case and with cross baffles, Chem. Eng. Trans. 71 (2018) 955–960.

Google Scholar

[14] H. Benzenine, R. Saim, S. Abboudi, O. Imine, Comparative study of the thermo-convective behavior of a turbulent flow in a rectangular duct in the presence of three planar baffles and/or corrugated (waved), J. Eng. Sci. Technol. 13, 1. (2018) 35–47.

DOI: 10.7726/ajhmt.2016.1021

Google Scholar

[15] Syaiful, S. Arsanti Rakha, U. Tony Suryo, Yurianto, W. Retno, Numerical Analysis of Heat and Fluid Flow Characteristics of Airflow Inside Rectangular Channel with Presence of Perforated Concave Delta Winglet Vortex Generators, International Journal of Heat and Technology. 37 (2019) 1059-1070.

DOI: 10.18280/ijht.370415

Google Scholar

[16] J. E. Salhi, T. Zarrouk, N. Salhi, Numerical study of the thermo-energy of a tubular heat exchanger with longitudinal baffles. Materials Today: Proceedings. 45 (2021) 7306-7313.

DOI: 10.1016/j.matpr.2020.12.1213

Google Scholar

[17] S. Pethkool, S. Eiamsa-Ard, S. Kwankaomeng, P. Promvonge, Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube, International Communications in Heat and Mass Transfer. 38, 3. (2011) 340-347.

DOI: 10.1016/j.icheatmasstransfer.2010.11.014

Google Scholar

[18] U. Salahuddin, M. Bilal, H. Ejaz, A review of the advancements made in helical baffles used in shell and tube heat exchangers, International Communications in Heat and Mass Transfer. 67 (2015) 104-108.

DOI: 10.1016/j.icheatmasstransfer.2015.07.005

Google Scholar

[19] P. Bichkar, O. Dandgaval, P. Dalvi, R. Godase, T. Dey, Study of shell and tube heat exchanger with the effect of types of baffles, Procedia Manufacturing. 20 (2018) 195-200.

DOI: 10.1016/j.promfg.2018.02.028

Google Scholar

[20] Y. G. Lei, Y. L. He, R. Li, Y. F. Gao, Effects of baffle inclination angle on flow and heat transfer of a heat exchanger with helical baffles, Chemical Engineering and Processing: Process Intensification, 47, 12. (2008) 2336-2345.

DOI: 10.1016/j.cep.2008.01.012

Google Scholar

[21] S. Yang, Y. Chen, J. Wu, H. Gu, Influence of baffle configurations on flow and heat transfer characteristics of unilateral type helical baffle heat exchangers, Applied Thermal Engineering. 133 (2018) 739-748.

DOI: 10.1016/j.applthermaleng.2018.01.091

Google Scholar

[22] F. Rubbi, F. K. Habib, M. Tusar, L. Das, M. T. Rahman, Numerical Study of Heat Transfer Enhancement of Turbulent Flow Using Twisted Tape Insert Fitted with Hemispherical Extruded Surface. International Journal of Heat and Technology. 38(2) (2020), 314-320.

DOI: 10.18280/ijht.380205

Google Scholar

[23] M. H. Tusar, P. K. Bhowmik, B. Salam, J. U. Ahamed, J. K. Kim, Convective heat transfer and friction factor characteristics of helical strip inserted annuli at turbulent flow. International Journal of Heat and Mass Transfer. 176 (2021), 121422.

DOI: 10.1016/j.ijheatmasstransfer.2021.121422

Google Scholar

[24] J-E. Salhi, K. Amghar, H. Bouali, N. Salhi, Combined Heat and Mass Transfer of Fluid Flowing through Horizontal Channel by Turbulent Forced Convection, Modeling and Simulation in Engineering. (2020) 1-11.

DOI: 10.1155/2020/1453893

Google Scholar

[25] B. R. Baliga, S. V. Patankar, A new finite-element formulation for convection-diffusion problems, Numerical Heat Transfer. 3 (1980) 393-409.

DOI: 10.1080/01495728008961767

Google Scholar

[26] J. H. Ferziger, M. Perić, R. L. Street, Computational methods for fluid dynamics: Berlin: springer. (2002) 196-200.

Google Scholar

[27] B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering. 79, 1. (1979) 59-98.

DOI: 10.1016/0045-7825(79)90034-3

Google Scholar

[28] H. K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method, Pearson education (2007).

Google Scholar

[29] D. Xu, C. Shu, B. C. Khoo, Numerical simulation of flows in Czochralski crystal growth by second-order upwind QUICK scheme, Journal of crystal growth. 173, 1, 2. (1997) 123-131.

DOI: 10.1016/s0022-0248(96)00791-9

Google Scholar

[30] C. J. Freitas, R. L. Street, A. N. Findikakis, J. R. Koseff, Numerical simulation of three dimensional flow in a cavity, International Journal for Numerical Methods in Fluids. 5, 6. (1985) 561-575.

DOI: 10.1002/fld.1650050606

Google Scholar

[31] T. Han, J. A. C. Humphrey, B. E. Launder, A comparison of hybrid and quadratic-upstream differencing in high Reynolds number elliptic flows, Computer Methods in Applied Mechanics and Engineering, 29,1. (1981) 81-95.

DOI: 10.1016/0045-7825(81)90016-5

Google Scholar

[32] M. A. Leschziner, Practical evaluation of three finite difference schemes for the computation of steady-state recirculating flows, Computer Methods in Applied Mechanics and Engineering, 23 (1980) 293-312.

DOI: 10.1016/0045-7825(80)90011-0

Google Scholar

[33] A. Pollard, A. L. W. Siu, The calculation of some laminar flows using various discretisation schemes, Computer Methods in Applied Mechanics and Engineering. 35, 3. (1982) 293-313.

DOI: 10.1016/0045-7825(82)90108-6

Google Scholar

[34] B. Bouhacina, R. Saim, H. Benzenine, H. F. Oztop, Analysis of thermal and dynamic comportment of a geothermal vertical U-tube heat exchanger, Energy Build. 58 (2013) 37–43.

DOI: 10.1016/j.enbuild.2012.11.037

Google Scholar

[35] L.C. Demartini, H. A. Vielmo, S. V. Möller, Numeric and experimental analysis of the turbulent flow through a channel with baffle plates. J. Brazilian Soc. Mech. Sci. Eng. 26, 2. (2004) 153–159.

DOI: 10.1590/s1678-58782004000200006

Google Scholar

[36] K. Amghar, M. A. Louhibi, N. Salhi, M. Salhi, Numerical simulation of forced convection turbulent in a channel with transverse baffles. Journal of materials and environmental sciences.8, 4. (2017) 1417-1427.

Google Scholar

[37] T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows. Computers and fluids. 24, 3. (1994) 227-238.

DOI: 10.1016/0045-7930(94)00032-t

Google Scholar

[38] S. V. Patankar, D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 15,10. (1972) 1787–1806.

DOI: 10.1016/0017-9310(72)90054-3

Google Scholar

[39] S.V. Patankar, Numerical Heat Transfer and Fluid Flow. Hemisphere, New York, USA (1980).

Google Scholar

[40] C. C. Chieng, B. E. Launder, On the calculation of turbulent heat transport downstream from an abrupt pipe expansion. Numer. Heat Transf. 3, 2. (1980) 189–207.

DOI: 10.1080/01495728008961754

Google Scholar

[41] M. K. Siddiqui, Heat transfer augmentation in a heat exchanger tube using a baffle. International Journal of Heat and Fluid Flow. 28, 2. (2007) 318-328.

DOI: 10.1016/j.ijheatfluidflow.2006.03.020

Google Scholar

[42] A. Amrani, N. Dihmani, S. Amraqui, A. Mezrhab, Numerical Investigation of Coupled Surface Radiation and Natural Convection in a Triangular Shaped Roof (Gabel Roof) under Winter Conditions, Defect and Diffusion Forum. 392 (2019) 200-217.

DOI: 10.4028/www.scientific.net/ddf.392.200

Google Scholar

[43] F. W. Dittus, L. M. K. Boelter, Heat transfer in automobile radiators of tubular type, International Communications in Heat and Mass Transfer. 12, 1. (1985)0 3-22.

DOI: 10.1016/0735-1933(85)90003-x

Google Scholar

[44] D. M. Medjahed, H. Ameur, R. Rebhi, M. Inc, H. Ahmad, Y. Menni, G. Lorenzini, F. S. Bayones, M. Aldhabani, Details on the Hydrothermal Characteristics within a Solar-Channel Heat-Exchanger Provided with Staggered T-Shaped Baffles. Energies. 14, 20. (2021) 6698.

DOI: 10.3390/en14206698

Google Scholar

[45] Y. Menni, A. J. Chamkha, C. Zidani, B. Benyoucef, Heat Transfer in Air Flow Past a Bottom Channel Wall-Attached Diamond-Shaped Baffle–Using a CFD Technique. Periodica Polytechnica Mechanical Engineering. 63, 2. (2019) 100-112.

DOI: 10.3311/ppme.12490

Google Scholar

[46] H. Benzenine, R. Saim, S. Abboudi, O. Imine, Numerical study on turbulent flow forced-convection heat transfer for air in a channel with waved fins. Mechanika/Mechanics. 19, 2. (2013) 150-158.

DOI: 10.5755/j01.mech.19.2.4154

Google Scholar