[1]
J. E. Salhi, Y. ES-Sabry, H. El Hour, N. Salhi, Numerical analysis of the thermal performance of a nanofluid water-Al2O3 in a heat sink with rectangular microchannel, 2nd International conference on Electronics, Control, Optimization and Computer Science. IEEE. (2020) 1-6.
DOI: 10.1109/icecocs50124.2020.9314421
Google Scholar
[2]
S. Gururatana, Heat transfer augmentation for electronic cooling, American Journal of Applied Sciences. 9 (2012) 436-439.
Google Scholar
[3]
J. E. Salhi, N. Salhi, Three-Dimensional Analysis of the Effect of Transverse Spacing between Perforations of a Deflector in a Heat Exchanger, International Conference on Electronic Engineering and Renewable Energy Springer. (2020) 719-728.
DOI: 10.1007/978-981-15-6259-4_75
Google Scholar
[4]
B. J. R. Bose, L. G. Asirvatham, M. N. Kumar, Experimental Convective Heat Transfer Studies on Graphene Nanofluid for the Cooling of Next Generation Electronic Components, International Journal of Applied Engineering Research. 12 (2017) 8534-8539.
Google Scholar
[5]
J. E. Salhi, T. Zarrouk, N. Salhi, Numerical analysis of the properties of nanofluids and their impact on the thermohydrodynamic phenomenon in a heat exchanger. Materials Today: Proceedings. 45 (2021) 7559-7565.
DOI: 10.1016/j.matpr.2021.02.365
Google Scholar
[6]
S.V. Patankar, E. M. Sparrow, Fully developed flow and heat transfer in ducts having stream wise-periodic variations of cross-sectional area, Journal of Heat Transfer, 99 (1977) 180-186.
DOI: 10.1115/1.3450666
Google Scholar
[7]
C. Chin-Hsiang, H. Wen-Hsiung, Numerical prediction for laminar forced convection in parallel-plate channels with transverse fin arrays, International journal of heat and mass transfer. 34 (1991) 2739-2749.
DOI: 10.1016/0017-9310(91)90232-4
Google Scholar
[8]
P. Promvonge, S. Sripattanapipat, S. Kwankaomeng, Laminar periodic flow and heat transfer in square channel with 45 inline baffles on two opposite walls, International Journal of Thermal Sciences. 49 (2010) 963-975.
DOI: 10.1016/j.ijthermalsci.2010.01.005
Google Scholar
[9]
P. Promvonge, S. Sripattanapipat, S. Tamna, S. Kwankaomeng, C. Thianpong, Numerical investigation of laminar heat transfer in a square channel with 45° inclined baffles, International Communications in Heat and Mass Transfer. 37, 2. (2010) 170-177.
DOI: 10.1016/j.icheatmasstransfer.2009.09.010
Google Scholar
[10]
S. S. Mousavi, K. Hooman, Heat and fluid flow in entrance region of a channel with staggered baffles, Energy Conversion and Management. 47, 15, 16. (2006) 2011-2019.
DOI: 10.1016/j.enconman.2005.12.018
Google Scholar
[11]
M. A. Ismael, Forced convection in partially compliant channel with two alternated baffles, International Journal of Heat and Mass Transfer. 142 (2019) 118455.
DOI: 10.1016/j.ijheatmasstransfer.2019.118455
Google Scholar
[12]
Y. Menni, A. Azzi, A. J. Chamkha, S. Harmand, Effect of wall-mounted V-baffle position in a turbulent flow through a channel: Analysis of best configuration for optimal heat transfer, Int. J. Numer, Methods Heat Fluid Flow. 29, 10. (2019) 3908–3937.
DOI: 10.1108/hff-06-2018-0270
Google Scholar
[13]
Y. Ahmed, R. Saim, Comparative numerical study of turbulent forced convection in a shell and tube heat exchanger between the simple case and with cross baffles, Chem. Eng. Trans. 71 (2018) 955–960.
Google Scholar
[14]
H. Benzenine, R. Saim, S. Abboudi, O. Imine, Comparative study of the thermo-convective behavior of a turbulent flow in a rectangular duct in the presence of three planar baffles and/or corrugated (waved), J. Eng. Sci. Technol. 13, 1. (2018) 35–47.
DOI: 10.7726/ajhmt.2016.1021
Google Scholar
[15]
Syaiful, S. Arsanti Rakha, U. Tony Suryo, Yurianto, W. Retno, Numerical Analysis of Heat and Fluid Flow Characteristics of Airflow Inside Rectangular Channel with Presence of Perforated Concave Delta Winglet Vortex Generators, International Journal of Heat and Technology. 37 (2019) 1059-1070.
DOI: 10.18280/ijht.370415
Google Scholar
[16]
J. E. Salhi, T. Zarrouk, N. Salhi, Numerical study of the thermo-energy of a tubular heat exchanger with longitudinal baffles. Materials Today: Proceedings. 45 (2021) 7306-7313.
DOI: 10.1016/j.matpr.2020.12.1213
Google Scholar
[17]
S. Pethkool, S. Eiamsa-Ard, S. Kwankaomeng, P. Promvonge, Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube, International Communications in Heat and Mass Transfer. 38, 3. (2011) 340-347.
DOI: 10.1016/j.icheatmasstransfer.2010.11.014
Google Scholar
[18]
U. Salahuddin, M. Bilal, H. Ejaz, A review of the advancements made in helical baffles used in shell and tube heat exchangers, International Communications in Heat and Mass Transfer. 67 (2015) 104-108.
DOI: 10.1016/j.icheatmasstransfer.2015.07.005
Google Scholar
[19]
P. Bichkar, O. Dandgaval, P. Dalvi, R. Godase, T. Dey, Study of shell and tube heat exchanger with the effect of types of baffles, Procedia Manufacturing. 20 (2018) 195-200.
DOI: 10.1016/j.promfg.2018.02.028
Google Scholar
[20]
Y. G. Lei, Y. L. He, R. Li, Y. F. Gao, Effects of baffle inclination angle on flow and heat transfer of a heat exchanger with helical baffles, Chemical Engineering and Processing: Process Intensification, 47, 12. (2008) 2336-2345.
DOI: 10.1016/j.cep.2008.01.012
Google Scholar
[21]
S. Yang, Y. Chen, J. Wu, H. Gu, Influence of baffle configurations on flow and heat transfer characteristics of unilateral type helical baffle heat exchangers, Applied Thermal Engineering. 133 (2018) 739-748.
DOI: 10.1016/j.applthermaleng.2018.01.091
Google Scholar
[22]
F. Rubbi, F. K. Habib, M. Tusar, L. Das, M. T. Rahman, Numerical Study of Heat Transfer Enhancement of Turbulent Flow Using Twisted Tape Insert Fitted with Hemispherical Extruded Surface. International Journal of Heat and Technology. 38(2) (2020), 314-320.
DOI: 10.18280/ijht.380205
Google Scholar
[23]
M. H. Tusar, P. K. Bhowmik, B. Salam, J. U. Ahamed, J. K. Kim, Convective heat transfer and friction factor characteristics of helical strip inserted annuli at turbulent flow. International Journal of Heat and Mass Transfer. 176 (2021), 121422.
DOI: 10.1016/j.ijheatmasstransfer.2021.121422
Google Scholar
[24]
J-E. Salhi, K. Amghar, H. Bouali, N. Salhi, Combined Heat and Mass Transfer of Fluid Flowing through Horizontal Channel by Turbulent Forced Convection, Modeling and Simulation in Engineering. (2020) 1-11.
DOI: 10.1155/2020/1453893
Google Scholar
[25]
B. R. Baliga, S. V. Patankar, A new finite-element formulation for convection-diffusion problems, Numerical Heat Transfer. 3 (1980) 393-409.
DOI: 10.1080/01495728008961767
Google Scholar
[26]
J. H. Ferziger, M. Perić, R. L. Street, Computational methods for fluid dynamics: Berlin: springer. (2002) 196-200.
Google Scholar
[27]
B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering. 79, 1. (1979) 59-98.
DOI: 10.1016/0045-7825(79)90034-3
Google Scholar
[28]
H. K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method, Pearson education (2007).
Google Scholar
[29]
D. Xu, C. Shu, B. C. Khoo, Numerical simulation of flows in Czochralski crystal growth by second-order upwind QUICK scheme, Journal of crystal growth. 173, 1, 2. (1997) 123-131.
DOI: 10.1016/s0022-0248(96)00791-9
Google Scholar
[30]
C. J. Freitas, R. L. Street, A. N. Findikakis, J. R. Koseff, Numerical simulation of three dimensional flow in a cavity, International Journal for Numerical Methods in Fluids. 5, 6. (1985) 561-575.
DOI: 10.1002/fld.1650050606
Google Scholar
[31]
T. Han, J. A. C. Humphrey, B. E. Launder, A comparison of hybrid and quadratic-upstream differencing in high Reynolds number elliptic flows, Computer Methods in Applied Mechanics and Engineering, 29,1. (1981) 81-95.
DOI: 10.1016/0045-7825(81)90016-5
Google Scholar
[32]
M. A. Leschziner, Practical evaluation of three finite difference schemes for the computation of steady-state recirculating flows, Computer Methods in Applied Mechanics and Engineering, 23 (1980) 293-312.
DOI: 10.1016/0045-7825(80)90011-0
Google Scholar
[33]
A. Pollard, A. L. W. Siu, The calculation of some laminar flows using various discretisation schemes, Computer Methods in Applied Mechanics and Engineering. 35, 3. (1982) 293-313.
DOI: 10.1016/0045-7825(82)90108-6
Google Scholar
[34]
B. Bouhacina, R. Saim, H. Benzenine, H. F. Oztop, Analysis of thermal and dynamic comportment of a geothermal vertical U-tube heat exchanger, Energy Build. 58 (2013) 37–43.
DOI: 10.1016/j.enbuild.2012.11.037
Google Scholar
[35]
L.C. Demartini, H. A. Vielmo, S. V. Möller, Numeric and experimental analysis of the turbulent flow through a channel with baffle plates. J. Brazilian Soc. Mech. Sci. Eng. 26, 2. (2004) 153–159.
DOI: 10.1590/s1678-58782004000200006
Google Scholar
[36]
K. Amghar, M. A. Louhibi, N. Salhi, M. Salhi, Numerical simulation of forced convection turbulent in a channel with transverse baffles. Journal of materials and environmental sciences.8, 4. (2017) 1417-1427.
Google Scholar
[37]
T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows. Computers and fluids. 24, 3. (1994) 227-238.
DOI: 10.1016/0045-7930(94)00032-t
Google Scholar
[38]
S. V. Patankar, D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 15,10. (1972) 1787–1806.
DOI: 10.1016/0017-9310(72)90054-3
Google Scholar
[39]
S.V. Patankar, Numerical Heat Transfer and Fluid Flow. Hemisphere, New York, USA (1980).
Google Scholar
[40]
C. C. Chieng, B. E. Launder, On the calculation of turbulent heat transport downstream from an abrupt pipe expansion. Numer. Heat Transf. 3, 2. (1980) 189–207.
DOI: 10.1080/01495728008961754
Google Scholar
[41]
M. K. Siddiqui, Heat transfer augmentation in a heat exchanger tube using a baffle. International Journal of Heat and Fluid Flow. 28, 2. (2007) 318-328.
DOI: 10.1016/j.ijheatfluidflow.2006.03.020
Google Scholar
[42]
A. Amrani, N. Dihmani, S. Amraqui, A. Mezrhab, Numerical Investigation of Coupled Surface Radiation and Natural Convection in a Triangular Shaped Roof (Gabel Roof) under Winter Conditions, Defect and Diffusion Forum. 392 (2019) 200-217.
DOI: 10.4028/www.scientific.net/ddf.392.200
Google Scholar
[43]
F. W. Dittus, L. M. K. Boelter, Heat transfer in automobile radiators of tubular type, International Communications in Heat and Mass Transfer. 12, 1. (1985)0 3-22.
DOI: 10.1016/0735-1933(85)90003-x
Google Scholar
[44]
D. M. Medjahed, H. Ameur, R. Rebhi, M. Inc, H. Ahmad, Y. Menni, G. Lorenzini, F. S. Bayones, M. Aldhabani, Details on the Hydrothermal Characteristics within a Solar-Channel Heat-Exchanger Provided with Staggered T-Shaped Baffles. Energies. 14, 20. (2021) 6698.
DOI: 10.3390/en14206698
Google Scholar
[45]
Y. Menni, A. J. Chamkha, C. Zidani, B. Benyoucef, Heat Transfer in Air Flow Past a Bottom Channel Wall-Attached Diamond-Shaped Baffle–Using a CFD Technique. Periodica Polytechnica Mechanical Engineering. 63, 2. (2019) 100-112.
DOI: 10.3311/ppme.12490
Google Scholar
[46]
H. Benzenine, R. Saim, S. Abboudi, O. Imine, Numerical study on turbulent flow forced-convection heat transfer for air in a channel with waved fins. Mechanika/Mechanics. 19, 2. (2013) 150-158.
DOI: 10.5755/j01.mech.19.2.4154
Google Scholar