Synthesis and Characterization of Chitosan/Alginate/Mesoporous Phosphotungstic Acid Electrolyte Membranes for Direct Methanol Fuel Cell Applications

Article Preview

Abstract:

In this study, chitosan (Chi), alginate (Alg), and mesoporous phosphotungstic acid (mPTA) were used as electrolyte membrane materials for DMFC. Chi and Alg will be crosslinked with mPTA filler to improve the performance of the electrolyte membrane. Characterizations carried out include tensile tests, methanol permeability, and proton conductivity. The results of the tensile test showed that the Chi-Alg(3:1) membrane had a higher tensile strength value (26.64 N/mm2) than the pure chitosan membrane (11.97 N/mm2). The results of methanol permeability show that the Chi-Alg(3:1)/mPTA(2.0%) membrane has a lower methanol permeability value (8.17 × 10-6 cm2 s-1) and a relatively high proton conductivity value, (45.8 × 10-3 S cm-1). Chi-Alg/mPTA membrane, simplicity of the used simple preparation method and the cost reduction can be applied as an electrolyte membrane for DMFC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-172

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Ramaswamy, N.E. Wong, G.K. Shimizu, MOFs as proton conductors–challenges and opportunities, Chem. Soc. Rev. 43 (2014) 5913–5932.

DOI: 10.1039/c4cs00093e

Google Scholar

[2] S.D.P. Cabello, S. Mollá, N.A. Ochoa, J. Marchese, E. Giménez, V. Compañ, New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC, J. Power Sources 265 (2014) 345–355.

DOI: 10.1016/j.jpowsour.2014.04.093

Google Scholar

[3] K. Divya, M.S.A. Saraswathi, D. Rana, A Nagendran, Non-Nafion-based cation exchange membranes for direct methanol fuel cells, in: K. Dutta (Eds.), Direct Methanol Fuel Cell Technology, Elsevier, 2020, p.37–70.

DOI: 10.1016/b978-0-12-819158-3.00003-3

Google Scholar

[4] P.C. Li, G.M. Liao, S.R. Kumar, C.M. Shih, C.C. Yang, D.M. Wang, S.J. Lue, Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly(vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells, Electrochim. Acta 187, (2016) 616–628.

DOI: 10.1016/j.electacta.2015.11.117

Google Scholar

[5] M. Goor, S. Menkin, E. Peled, High power direct methanol fuel cell for mobility and portable applications, Int. J. Hydrogen Energy 44 (2019) 3138–3143.

DOI: 10.1016/j.ijhydene.2018.12.019

Google Scholar

[6] S. Basri, S.K. Kamarudin, W.R.W. Daud, Z. Yaakub, M.M. Ahmad, N. Hashim, U.A. Hasran, Unsteady-state modelling for a passive liquid-feed DMFC, Int. J. Hydrogen Energy 34 (2009) 5759–5769.

DOI: 10.1016/j.ijhydene.2009.05.092

Google Scholar

[7] C.A.R. Cotton, N.J. Claassens, S. Benito-Vaquerizo, A. Bar-Even, Renewable methanol and formate as microbial feedstocks, Curr. Opin. Biotechnol. 62 (2020) 168–180.

DOI: 10.1016/j.copbio.2019.10.002

Google Scholar

[8] N. Shaari, S.K. Kamarudin, chitosan and alginate types of bio-membrane in fuel cell application: An overview, J. Power Sources 289 (2015) 71–80.

DOI: 10.1016/j.jpowsour.2015.04.027

Google Scholar

[9] A. Kakoria, S. Sinha-Ray, A review on biopolymer-based fibers via electrospinning and solution blowing and their applications, Fibers 6 (2018) 45.

DOI: 10.3390/fib6030045

Google Scholar

[10] M.S.M. Eldin, A.E. Hashem, T.M. Tamer, A.M. Omer, M.E. Yossuf, M.M. Sabet, Development of crosslinked chitosan/alginate polyelectrolyte proton exchanger membranes for fuel cell applications, Int. J. Electrochem. Sci. 12, (2017) 3840–3858.

DOI: 10.20964/2017.05.45

Google Scholar

[11] B. Zhu, H. Yin, Alginate lyase: Review of major sources and classification, properties, structure-function analysis and applications, Bioengineered 6 (2015) 125–131.

DOI: 10.1080/21655979.2015.1030543

Google Scholar

[12] I.D. Hay, Z.U. Rehman, M.F. Moradali, Y. Wang, B.H.A. Rehm, Microbial alginate production, modification and its applications, Microb. Biotechnol. 6 (2013) 637–650.

DOI: 10.1111/1751-7915.12076

Google Scholar

[13] A.R. Kaveeshwar, M. Sanders, S.K. Ponnusamy, D. Depan, R. Subramaniam, Chitosan as a biosorbent for adsorption of iron (II) from fracking wastewater, Polym. Adv. Technol. 29 (2018) 961–969.

DOI: 10.1002/pat.4207

Google Scholar

[14] S. Mohanapriya, V. Raj, Cesium-substituted mesoporous phosphotungstic acid embedded chitosan hybrid polymer membrane for direct methanol fuel cells, Ionics 24 (2018) 2729–2743.

DOI: 10.1007/s11581-017-2406-1

Google Scholar

[15] H. Ilbeygi, I.Y. Kim, M.G. Kim, W. Cha, P.S.M. Kumar, D.H. Park, A. Vinu, Highly crystalline mesoporous phosphotungstic acid: a high‐performance electrode material for energy‐storage applications, Angew. Chem. Int. Ed. 58 (2019) 10849–10854.

DOI: 10.1002/anie.201901224

Google Scholar

[16] M. Yamada, I. Honma, Heteropolyacid-encapsulated self-assembled materials for anhydrous proton-conducting electrolytes, J. Phys. Chem. B 110 (2006) 20486–20490.

DOI: 10.1021/jp063488k

Google Scholar

[17] M. Tohidian, S.R. Ghaffarian, S.E. Shakeri, E. Dashtimoghadam, M.M. Hasani-Sadrabadi, Organically modified montmorillonite and chitosan/phosphotungstic acid complex nanocomposites as high-performance membranes for fuel cell applications, J. Solid State Electrochem. 17 (2013) 2123–2137.

DOI: 10.1007/s10008-013-2074-7

Google Scholar

[18] B. Smitha, S. Sridhar, A.A. Khan, Chitosan–sodium alginate polyion complexes as fuel cell membranes, Eur. Polym. J. 41 (2005) 1859–1866.

DOI: 10.1016/j.eurpolymj.2005.02.018

Google Scholar

[19] A. Pancho, C. Díaz, O. Sotomayor, Influence of Fe on the microstructure and mechanical properties of low Al-SI alloys, Int. J. Microstruct. Mater. Prop. 13 (2018) 317–330.

DOI: 10.1504/ijmmp.2018.10018201

Google Scholar

[20] H. Junoh, J. Jaafar, N.A.H.M. Nordin, A.F. Ismail, M.H.D. Othman, M. Rahman, A.N. Yusof, Synthetic polymer-based membranes for direct methanol fuel cell (DMFC) applications, in: Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability, Elsevier, 2020, p.337–363.

DOI: 10.1016/b978-0-12-818485-1.00015-0

Google Scholar

[21] D. Permana, M. Purwanto, L.O.A.N. Ramadhan, L. Atmaja, Synthesis and characterization of chitosan/phosphotungstic acid-montmorillonite modified by silane for DMFC membrane, Indones. J. Chem. 15 (2015) 218–225.

DOI: 10.22146/ijc.21188

Google Scholar

[22] F. Altaf, R. Batool, R. Gill, M.A. Shabir, M. Drexler, F. Alamgir, K.I. Jacob, Novel N-p-carboxy benzyl chitosan/poly (vinyl alcohol/functionalized zeolite mixed matrix membranes for DMFC applications, Carbohydr. Polym. 237 (2020) 116111.

DOI: 10.1016/j.carbpol.2020.116111

Google Scholar