[1]
N. Shaari, S.K. Kamarudin, Performance of crosslinked sodium alginate/sulfonated graphene oxide as polymer electrolyte membrane in DMFC application: RSM optimization approach, Int. J. Hydrogen Energy 43 (2018) 22986–23003.
DOI: 10.1016/j.ijhydene.2018.10.098
Google Scholar
[2]
A. Priyangga, Z. Mumtazah, H. Junoh, J. Jaafar, L. Atmaja, Morphology and topography studies of composite membranes developed from chitosan/phthaloyl chitosan consisting multi-walled carbon nanotube/montmorillonite as filler, J. Membr. Sci. Res. 7 (2021) 295–304.
DOI: 10.1063/1.5141679
Google Scholar
[3]
M. Purwanto, L. Atmaja, M.A. Mohamed, M.T. Salleh, J. Jaafar, A.F. Ismail, M. Santoso, N. Widiastuti, Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells, RSC Adv. 6 (2016) 2314–22.
DOI: 10.1039/c5ra22420a
Google Scholar
[4]
S. Elakkiya, G. Arthanareeswaran, K. Venkatesh, J. Kweon, Enhancement of fuel cell properties in polyethersulfone and sulfonated poly (ether ether ketone) membranes using metal oxide nanoparticles for proton exchange membrane fuel cell, Int. J. Hydrogen Energy (2018) 21750–21759.
DOI: 10.1016/j.ijhydene.2018.04.094
Google Scholar
[5]
K. Charradi, Z. Ahmed, P. Aranda, R. Chtourou, Silica/montmorillonite nanoarchitectures and layered double hydroxide-SPEEK based composite membranes for fuel cells applications, Appl. Clay Sci. 174 (2018) 77–85.
DOI: 10.1016/j.clay.2019.03.027
Google Scholar
[6]
Y. Ou, W.C. Tsen, C. Gong, J. Wang, H. Liu, G. Zheng, C. Qin, S. Wen, Chitosan-based composite membranes containing chitosan-coated carbon nanotubes for polymer electrolyte membranes, Polym. Adv. Technol. 29 (2018) 612–622.
DOI: 10.1002/pat.4171
Google Scholar
[7]
V. Vijayaleksmi, D. Khastgir, Chitosan/partially sulfonated poly (vinylidene fluoride) blends as polymer electrolyte membranes for direct methanol fuel cell applications, Cellulose 25 (2018) 661-681.
DOI: 10.1007/s10570-017-1565-6
Google Scholar
[8]
C. Ni, Y. Wei, Q. Zhao, B. Liu, Z. Sun, Y. Gu, M. Zhang, W. Hu, Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose, Appl. Surf. Sci. 434 (2018) 163–175.
DOI: 10.1016/j.apsusc.2017.09.094
Google Scholar
[9]
S. He, Y. Lin, H. Ma, H. Jia, X. Liu, J. Lin, Preparation of sulfonated poly(ether ether ketone) (SPEEK) membrane using ethanol/water mixed solvent, Mater. Lett. 169 (2016) 69–72.
DOI: 10.1016/j.matlet.2016.01.099
Google Scholar
[10]
N. Shaari, S.K. Kamarudin, S. Basri, L.K. Shyuan, M.S. Masdar, D. Nordin, Enhanced proton conductivity and methanol permeability reduction via sodium alginate electrolyte-sulfonated graphene oxide bio-membrane, Nanoscale Res. Lett. 13 (2018) 82.
DOI: 10.1186/s11671-018-2493-6
Google Scholar
[11]
M. Ranjani, M. Pannipara, A.G. Al-Sehemi, A. Vignesh, G.G. Kumar, Chitosan/sulfonated graphene oxide/silica nanocomposite membranes for direct methanol fuel cells, Solid State Ionics 338 (2019) 153–160.
DOI: 10.1016/j.ssi.2019.05.010
Google Scholar
[12]
S. Bano, Y.S. Negi, R. Illathvalappil, S. Kurungot, K. Ramya, Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes, Electrochim. Acta 293 (2019) 260–272.
DOI: 10.1016/j.electacta.2018.10.029
Google Scholar
[13]
R.S.L. Yee, K. Zhang, B.P. Ladewig, The effects of sulfonated poly(ether ether ketone) ion exchange preparation conditions on membrane properties, Membranes 3 (2013) 182–195.
DOI: 10.3390/membranes3030182
Google Scholar
[14]
M.J. Parnian, F. Gashoul, S. Rowshanzamir, Studies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications, Iran. J. Hydrogen Fuel Cell 3 (2016) 221–232.
DOI: 10.1016/j.energy.2017.02.143
Google Scholar
[15]
M. Oroujzadeh, M. Etesami, S. Mehdipour-Ataei, Poly(ether ketone) composite membranes by electrospinning for fuel cell applications, J. Power Sources 434 (2019) 226733.
DOI: 10.1016/j.jpowsour.2019.226733
Google Scholar
[16]
E. Bagheripour, A.R. Moghadassi, S.M. Hosseini, B. Van der Bruggen, F. Parvizian, Novel composite graphene oxide/chitosan nanoplates incorporated into PES based nanofiltration membrane: Chromium removal and antifouling enhancement, J. Ind. Eng. Chem. 62 (2018) 311–320.
DOI: 10.1016/j.jiec.2018.01.009
Google Scholar
[17]
R.P. Pandey, G. Shukla, M. Manohar, V.K. Shahi, Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview, Adv. Colloid Interface Sci. 240 (2017) 15–30.
DOI: 10.1016/j.cis.2016.12.003
Google Scholar
[18]
H. Lee, J. Han, K. Kim, J. Kim, E. Kim, H. Shin, J.C. Lee, Highly sulfonated polymer-grafted graphene oxide composite membranes for proton exchange membrane fuel cells, J. Ind. Eng. Chem. 74 (2019) 223–232.
DOI: 10.1016/j.jiec.2019.03.012
Google Scholar
[19]
K.H. Gopi, V.M. Dhavale, S.D. Bhat, Development of polyvinyl alcohol/chitosan blend anion exchange membrane with mono and di quaternizing agents for application in alkaline polymer electrolyte fuel cells, Mater. Sci. Energy Technol. 2 (2019) 194–202.
DOI: 10.1016/j.mset.2019.01.010
Google Scholar
[20]
Y.P. Ying, S.K. Kamarudin, M.S. Masdar, Silica-related membranes in fuel cell applications: An overview, Int. J. Hydrogen Energy 43 (2018) 16068–16084.
DOI: 10.1016/j.ijhydene.2018.06.171
Google Scholar
[21]
M. Yadav, S. Ahmad, Montmorillonite/graphene oxide/chitosan composite: Synthesis, characterization and properties, Int. J. Biol. Macromol. 79 (2015) 923–933.
DOI: 10.1016/j.ijbiomac.2015.05.055
Google Scholar