Physicochemical Studies of Chitosan Blended Sulfonated Poly Ether-Ether Ketone and Graphene Oxide as Filler for Direct Methanol Fuel Cell

Article Preview

Abstract:

Chitosan (CS) was successfully extracted from the shrimp shell of Litopenaeus vanamei and used as a biopolymer for the fuel cells. The composite membranes containing chitosan blended poly ether-ether ketone (PEEK) and graphene oxide (GO) as filler were fabricated using solvent evaporation method and its physicochemical studies were also investigated. The sulfonation degree of sulfonated poly ether-ether ketone (SPEEK) was 60.61%. Among the fabricated membranes, the CS/SPEEK/SGO membrane was the best membrane to achieve high ion exchange capacity (IEC) which is 5.94 mmol.g-1. Moreover, its methanol uptake and permeability were 6.21% and 6.34×10-6 cm2.s-1, respectively. The highest water uptake was also obtained by CS/SPEEK/SGO membrane which is 61.54% followed by other membranes CS/SGO, CS/GO, CS/SPEEK, CS/SPEEK/GO, and CS. In a comparison, the lowest water uptake was obtained by pristine CS membrane which is 52.17%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-181

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Shaari, S.K. Kamarudin, Performance of crosslinked sodium alginate/sulfonated graphene oxide as polymer electrolyte membrane in DMFC application: RSM optimization approach, Int. J. Hydrogen Energy 43 (2018) 22986–23003.

DOI: 10.1016/j.ijhydene.2018.10.098

Google Scholar

[2] A. Priyangga, Z. Mumtazah, H. Junoh, J. Jaafar, L. Atmaja, Morphology and topography studies of composite membranes developed from chitosan/phthaloyl chitosan consisting multi-walled carbon nanotube/montmorillonite as filler, J. Membr. Sci. Res. 7 (2021) 295–304.

DOI: 10.1063/1.5141679

Google Scholar

[3] M. Purwanto, L. Atmaja, M.A. Mohamed, M.T. Salleh, J. Jaafar, A.F. Ismail, M. Santoso, N. Widiastuti, Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells, RSC Adv. 6 (2016) 2314–22.

DOI: 10.1039/c5ra22420a

Google Scholar

[4] S. Elakkiya, G. Arthanareeswaran, K. Venkatesh, J. Kweon, Enhancement of fuel cell properties in polyethersulfone and sulfonated poly (ether ether ketone) membranes using metal oxide nanoparticles for proton exchange membrane fuel cell, Int. J. Hydrogen Energy (2018) 21750–21759.

DOI: 10.1016/j.ijhydene.2018.04.094

Google Scholar

[5] K. Charradi, Z. Ahmed, P. Aranda, R. Chtourou, Silica/montmorillonite nanoarchitectures and layered double hydroxide-SPEEK based composite membranes for fuel cells applications, Appl. Clay Sci. 174 (2018) 77–85.

DOI: 10.1016/j.clay.2019.03.027

Google Scholar

[6] Y. Ou, W.C. Tsen, C. Gong, J. Wang, H. Liu, G. Zheng, C. Qin, S. Wen, Chitosan-based composite membranes containing chitosan-coated carbon nanotubes for polymer electrolyte membranes, Polym. Adv. Technol. 29 (2018) 612–622.

DOI: 10.1002/pat.4171

Google Scholar

[7] V. Vijayaleksmi, D. Khastgir, Chitosan/partially sulfonated poly (vinylidene fluoride) blends as polymer electrolyte membranes for direct methanol fuel cell applications, Cellulose 25 (2018) 661-681.

DOI: 10.1007/s10570-017-1565-6

Google Scholar

[8] C. Ni, Y. Wei, Q. Zhao, B. Liu, Z. Sun, Y. Gu, M. Zhang, W. Hu, Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose, Appl. Surf. Sci. 434 (2018) 163–175.

DOI: 10.1016/j.apsusc.2017.09.094

Google Scholar

[9] S. He, Y. Lin, H. Ma, H. Jia, X. Liu, J. Lin, Preparation of sulfonated poly(ether ether ketone) (SPEEK) membrane using ethanol/water mixed solvent, Mater. Lett. 169 (2016) 69–72.

DOI: 10.1016/j.matlet.2016.01.099

Google Scholar

[10] N. Shaari, S.K. Kamarudin, S. Basri, L.K. Shyuan, M.S. Masdar, D. Nordin, Enhanced proton conductivity and methanol permeability reduction via sodium alginate electrolyte-sulfonated graphene oxide bio-membrane, Nanoscale Res. Lett. 13 (2018) 82.

DOI: 10.1186/s11671-018-2493-6

Google Scholar

[11] M. Ranjani, M. Pannipara, A.G. Al-Sehemi, A. Vignesh, G.G. Kumar, Chitosan/sulfonated graphene oxide/silica nanocomposite membranes for direct methanol fuel cells, Solid State Ionics 338 (2019) 153–160.

DOI: 10.1016/j.ssi.2019.05.010

Google Scholar

[12] S. Bano, Y.S. Negi, R. Illathvalappil, S. Kurungot, K. Ramya, Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes, Electrochim. Acta 293 (2019) 260–272.

DOI: 10.1016/j.electacta.2018.10.029

Google Scholar

[13] R.S.L. Yee, K. Zhang, B.P. Ladewig, The effects of sulfonated poly(ether ether ketone) ion exchange preparation conditions on membrane properties, Membranes 3 (2013) 182–195.

DOI: 10.3390/membranes3030182

Google Scholar

[14] M.J. Parnian, F. Gashoul, S. Rowshanzamir, Studies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications, Iran. J. Hydrogen Fuel Cell 3 (2016) 221–232.

DOI: 10.1016/j.energy.2017.02.143

Google Scholar

[15] M. Oroujzadeh, M. Etesami, S. Mehdipour-Ataei, Poly(ether ketone) composite membranes by electrospinning for fuel cell applications, J. Power Sources 434 (2019) 226733.

DOI: 10.1016/j.jpowsour.2019.226733

Google Scholar

[16] E. Bagheripour, A.R. Moghadassi, S.M. Hosseini, B. Van der Bruggen, F. Parvizian, Novel composite graphene oxide/chitosan nanoplates incorporated into PES based nanofiltration membrane: Chromium removal and antifouling enhancement, J. Ind. Eng. Chem. 62 (2018) 311–320.

DOI: 10.1016/j.jiec.2018.01.009

Google Scholar

[17] R.P. Pandey, G. Shukla, M. Manohar, V.K. Shahi, Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview, Adv. Colloid Interface Sci. 240 (2017) 15–30.

DOI: 10.1016/j.cis.2016.12.003

Google Scholar

[18] H. Lee, J. Han, K. Kim, J. Kim, E. Kim, H. Shin, J.C. Lee, Highly sulfonated polymer-grafted graphene oxide composite membranes for proton exchange membrane fuel cells, J. Ind. Eng. Chem. 74 (2019) 223–232.

DOI: 10.1016/j.jiec.2019.03.012

Google Scholar

[19] K.H. Gopi, V.M. Dhavale, S.D. Bhat, Development of polyvinyl alcohol/chitosan blend anion exchange membrane with mono and di quaternizing agents for application in alkaline polymer electrolyte fuel cells, Mater. Sci. Energy Technol. 2 (2019) 194–202.

DOI: 10.1016/j.mset.2019.01.010

Google Scholar

[20] Y.P. Ying, S.K. Kamarudin, M.S. Masdar, Silica-related membranes in fuel cell applications: An overview, Int. J. Hydrogen Energy 43 (2018) 16068–16084.

DOI: 10.1016/j.ijhydene.2018.06.171

Google Scholar

[21] M. Yadav, S. Ahmad, Montmorillonite/graphene oxide/chitosan composite: Synthesis, characterization and properties, Int. J. Biol. Macromol. 79 (2015) 923–933.

DOI: 10.1016/j.ijbiomac.2015.05.055

Google Scholar