[1]
A.S. Reddy, G.V. Rao, S. Uthanna, P.S. Reddy, Structural and optical studies on dc reactive magnetron sputtered Cu2O films. Mater. Lett. 60 (2006) 1617.
DOI: 10.1016/j.matlet.2005.11.101
Google Scholar
[2]
M.A Fakhri, MM Hassan, Morphological and structural properties of Cu2O/2-D photonic silicon nano structure for gas sensors, AIP Conference Proceedings 2213 (1) (2020) 020244.
Google Scholar
[3]
M.A. Rafea, N. Roushdy, Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. J. Phys. D Appl. Phys. 42 (2009) 015413.
DOI: 10.1088/0022-3727/42/1/015413
Google Scholar
[4]
A. D Faisal, RA Ismail, WK Khalef, ET Salim, Synthesis of ZnO nanorods on a silicon substrate via hydrothermal route for optoelectronic applications, Optical and Quantum Electronics 52 (2020) 1-12.
DOI: 10.1007/s11082-020-02329-1
Google Scholar
[5]
H. Alireza, Annealing temperature effect on the properties of untreated and treated copper films with oxygen plasma, Journal of Theoretical and Applied Physics 8.3 (2014) 132.
Google Scholar
[6]
M. M Hassan, MA Fakhri, SA Adnan, Structural and Morphological Properties of Nano Photonic Silicon Structure for Photonics Applications, Defect and Diffusion Forum 398 (2020) 29-33.
DOI: 10.4028/www.scientific.net/ddf.398.29
Google Scholar
[7]
T.J. Richardson, J.L. Slack, M.D. Rubin, Electrochromism in copper oxide thin films. Electrochim. Acta 46 (2001) 90.
DOI: 10.1016/s0013-4686(01)00397-8
Google Scholar
[8]
E T. Salim, Raid A Ismail, Halemah T Halbos, Growth of Nb2O5 film using hydrothermal method: effect of Nb concentration on physical properties, Materials Research Express, 6(11) (2019) 116429.
DOI: 10.1088/2053-1591/ab47c2
Google Scholar
[9]
T.H. Pei, Y.T. Huang, Temperature modulation of the superprism effect in photonic crystals composed of the copper oxide high-temperature superconductor. Jpn. J. Appl. Phys. 46 (2007) L593.
DOI: 10.1143/jjap.46.l593
Google Scholar
[10]
M.M Hassan, MA Fakhri, SA Adnan,, 2-D of Nano Photonic Silicon Fabrication for Sensing Application, Digest Journal of Nanomaterials and Biostructures 14(4) (2019) 873-878.
Google Scholar
[11]
R.Jorge, A catalytic application of Cu2O and CuO films deposited over fiberglass." Applied Surface Science 174.3-4 (2001): 177-184.
DOI: 10.1016/s0169-4332(00)00822-9
Google Scholar
[12]
E. T Salim, A. I Hassan, S. A Naaes, Effect of gate dielectric thicknesses on MOS photodiode performance and electrical properties, Materials Research Express, 6(8) (2019).
DOI: 10.1088/2053-1591/ab1bc2
Google Scholar
[13]
S. T. Omelchenko, Excitonic effects in emerging photovoltaic materials: A case study in Cu2O, ACS Energy Letters 2.2 (2017): 431-437.
Google Scholar
[14]
M. A Fakhri, A. W Abdulwahhab, S. M Kadhim, M. S Alwazni, S. A Adnan, Thermal oxidation effects on physical properties of CuO 2 thin films for optoelectronic application, Materials Research Express, 6(2) (2018) 026429.
DOI: 10.1088/2053-1591/aaf217
Google Scholar
[15]
Z. Zang, Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films, Applied Physics Letters 112.4 (2018): 042106.
DOI: 10.1063/1.5017002
Google Scholar
[16]
M. H. A. Wahid, B. A. Badr, E. T. Salim, U. Hashim and Z. T. Salim, Enhancement of Lithium Niobate nanophotonic structures via spin-coating technique for optical waveguides application, The European Physical Journal Conferences 162(7) (2017) 01004.
DOI: 10.1051/epjconf/201716201004
Google Scholar
[17]
S. Choudhary, J. V. N. Sarma, and S. Gangopadhyay, Growth and characterization of single phase Cu2O by thermal oxidation of thin copper films, AIP Conference Proceedings. 1724(1) (2016) 020116.
DOI: 10.1063/1.4945236
Google Scholar
[18]
B A. Badr, N. H. Numan, F. G. Khalid, M. A. Fakhri, A. W. Abdulwahhab, All optical investigations of copper oxide for detection devices, Journal of Ovonic Research 15(1) (2019) 53-59.
Google Scholar
[19]
N. Winkler, Solution-processed all-oxide solar cell based on electrodeposited Cu 2 O and ZnMgO by spray pyrolysis, Journal of materials science 53.17 (2018) 12231-12243.
DOI: 10.1007/s10853-018-2482-2
Google Scholar
[20]
RS Mahmood, W Abdulsatar, MA Fakhri , Synthesis of nano titanium oxide for photonic application, AIP Conference Proceedings 2213 (1) (2020) 020236.
Google Scholar
[21]
S. Dolai, Cuprous oxide (Cu2O) thin films prepared by reactive dc sputtering technique, Vacuum 141 (2017) 296-306.
DOI: 10.1016/j.vacuum.2017.04.033
Google Scholar
[22]
M.M Hassan, M. A Fakhri, S.Adnan, Structural Electrical and Detection Properties of Copper Oxide Based on Optoelectronic Device, IOP Conf. Series: Materials Science and Engineering 454(1) (2018) 012172.
DOI: 10.1088/1757-899x/454/1/012172
Google Scholar
[23]
M. A Badillo-Ávila, Cu2O thin films obtained from sol-gel cuo films using a simple argon/dry-air microwave plasma,Materials Science in Semiconductor Processing 74 (2018): 203-209.
DOI: 10.1016/j.mssp.2017.10.036
Google Scholar
[24]
E T.Salim, R A. Ismail, M A.Fakhri, B G.Rasheed, Z T.Salim, Synthesis of Cadmium Oxide/Si Heterostructure for Two-Band Sensor Application, Iranian Journal of Science and Technology, Transactions A: Science 43(3) (2019) 1337–1343.
DOI: 10.1007/s40995-018-0607-8
Google Scholar
[25]
I. S. Brandt, Electrodeposition of Cu 2 O: growth, properties, and applications,Journal of Solid State Electrochemistry 21.7 (2017) 1999-2020.
Google Scholar
[26]
M. A. Muhsien, E. T. Salim, and I. R. Agool, Preparation and characterization of (Au/n-Sn O2 /Si O2 /Si/Al) MIS device for optoelectronic application, International Journal of Optics, 2013 (2013) Article ID 756402, 9 pages.
DOI: 10.1155/2013/756402
Google Scholar
[27]
C. Chen, A. A. Ejigu, and L. Chao, Stable Cu2O Photoelectrodes by Reactive Ion Beam Sputter Deposition, Advances in Materials Science and Engineering 2018 (2018) Article ID 3792672.
DOI: 10.1155/2018/3792672
Google Scholar
[28]
FG Khalid, AS Ibraheam, MA Fakhri, NH Numan, Some of the electrical and thermoelectrical properties for Cdo thin films preperaerd using pulsed laser deposition method, AIP Conference Proceedings 2213 (1) (2020) 020204.
DOI: 10.1063/5.0000180
Google Scholar
[29]
M. Kracht, J. Schörmann, and M. Eickhoff, Plasma assisted molecular beam epitaxy of Cu2O on MgO (001): Influence of copper flux on epitaxial orientation, Journal of Crystal Growth 436 (2016): 87-91.
DOI: 10.1016/j.jcrysgro.2015.11.041
Google Scholar
[30]
R. A. Ismail, B.G. Rasheed, E. T. Salm, M. Al-Hadethy, Transparent and conducting ZnO films prepared by reactive pulsed laser deposition, Journal of Materials Science: Materials in Electronics 18(4) (2007) 397-400.
DOI: 10.1007/s10854-006-9046-y
Google Scholar
[31]
Y. Qian, Synthesis of cuprous oxide (Cu2O) nanoparticles/graphene composite with an excellent electrocatalytic activity towards glucose, Int. J. Electrochem. Sci 7 (2012) 10063-10073.
Google Scholar
[32]
MA Fakhri, SFH Alhasan, NH Numan, JM Taha, FG Khalid, Effects of laser wavelength on some of physical properties of Al2O3 nano films for optoelectronic device, AIP Conference Proceedings 2213 (1) (2020) 020227.
DOI: 10.1063/5.0000183
Google Scholar
[33]
J. M Taha, RA Nassif, NH Numan, MA Fakhri, Effects of oxygen gas on the physical properties of tin oxide nano films using laser light as ablation source, AIP Conference Proceedings 2213 (1) (2020) 020235.
DOI: 10.1063/5.0000198
Google Scholar
[34]
S Basel, N. H Numan, F. G Khalid, M. A Fakhri, Structure and optical properties of HfO2 nano films grown by PLD for optoelectronic device, AIP Conference Proceedings 2213 (1) (2020) 020228.
DOI: 10.1063/5.0000185
Google Scholar
[35]
S. M Taleb, M. A Fakhri, S. A Adnan, Substrate and annealing temperatures effects on the structural results of LiNbO3 photonic films using PLD method, AIP Conference Proceedings 2213 (1) (2020) 020234.
DOI: 10.1063/5.0000197
Google Scholar
[36]
F. G Khalid, A. Q Raheema, Z. S Alshakhli, M. A Fakhri, Preparation of nano indium oxide for optoelectronics application, AIP Conference Proceedings 2213 (1) (2020) 020229.
DOI: 10.1063/5.0000187
Google Scholar
[37]
R A.Ismail, E. T.Salim, W. K.Hamoudi, Characterization of nanostructured hydroxyapatite prepared by Nd:YAG laser deposition, Materials Science and Engineering C 33(1) (2013) 47-52.
DOI: 10.1016/j.msec.2012.08.002
Google Scholar
[38]
M. S. Al Wazny, E. T. Salim, B. A. Bader and M. A. Fakhry, Synthesis of Bi2O3 films, studying their optical, structural, and surface roughness properties, IOP Conference Series Materials Science and Engineering 454(1) (2018) 012160.
DOI: 10.1088/1757-899x/454/1/012160
Google Scholar
[39]
Amal Al-Kahlout, Thermal treatment optimization of ZnO nanoparticles-photoelectrodes for high photovoltaic performance of dye-sensitized solar cells, Journal of the Association of Arab Universities for Basic and Applied Sciences 17.1 (2015) 66-72.
DOI: 10.1016/j.jaubas.2014.02.004
Google Scholar
[40]
L. Z Mohammed, M. A Fakhri, A. K Abass, An overview of optical modulator based on nanophotonic lithium niobate film, AIP Conference Proceedings 2213 (1) (2020) 020231.
Google Scholar
[41]
A Zaier, Annealing effects on the structural, electrical and optical properties of ZnO thin films prepared by thermal evaporation technique. Journal of King Saud University-Science 27.4 (2015): 356-360.
DOI: 10.1016/j.jksus.2015.04.007
Google Scholar
[42]
FA Hattab, M. A Fakhri, F. G Khalid, L. F Awni, S. A Ali, G. Q Ramzi, , Electrical and detection properties of nano silver oxide deposited by reactive pulsed laser deposition, AIP Conference Proceedings 2213 (1) (2020) 020243.
DOI: 10.1063/5.0000210
Google Scholar
[43]
Q. Q Mohammed, B. A Badr, A. M Banoosh, M. A Fakhri, A. W Abdulwahab, Oxygen pressure effects on optical properties of ZnO prepared by reactive puled laser deposition, AIP Conference Proceedings 2213 (1) (2020) 020237.
DOI: 10.1063/5.0000202
Google Scholar
[44]
A. S Ibraheam, J. M Rzaij, M. A Fakhri, A. W Abdulwahhab, Structural, optical and electrical investigations of Al:ZnO nanostructures as UV photodetector synthesized by spray pyrolysis technique, Materials Research Express 6(5) (2019) 055916.
DOI: 10.1088/2053-1591/ab06d4
Google Scholar
[45]
H. Zhou, The investigation of Al-doped ZnO as an electron transporting layer for visible-blind ultraviolet photodetector based on n-ZnO nanorods/p-Si heterojunction, Mater. Sci. Semicond. Process. 38 (2015) 67e71.
DOI: 10.1016/j.mssp.2015.04.005
Google Scholar
[46]
A. A A. Hamead, F. M Othman, M. A Fakhri, Preparation of MgO–MnO2 nanocomposite particles for cholesterol sensors, Journal of Materials Science: Materials in Electronics volume 32, pages15523–15532 (2021).
DOI: 10.1007/s10854-021-06102-2
Google Scholar
[47]
L.Z. Mohammed, M.A. Fakhri, A.K. Structural and Optical Properties of nanostructured hybrid LiNbO3/Silicon wafer for Fabricating Optical Modulator, Journal of Physics: Conference Series 1795(1) )2021( 12055.
DOI: 10.1088/1742-6596/1795/1/012055
Google Scholar
[48]
M. Abdul Muhsien, E. T. Salim, Y. Al-Douri, A. F. Sale, I. R. Agool, Synthesis of SnO2 nanostructures employing Nd:YAG laser, Applied Physics A: Materials Science and Processing 120(2) (2015) 725-730.
DOI: 10.1007/s00339-015-9249-2
Google Scholar
[49]
M.A.M. Hassan, M.F.H. Al-Kadhemy, E.T. Salem, Effect irradiation time of Gamma ray on MSISM (Au/SnO2/SiO2/Si/Al) devices using theoretical modeling, International Journal of Nanoelectronics and Materials, 8(2) (2014) 69-82.
Google Scholar
[50]
W. Wu, C.C. Tseng, C. Li, C.K. Chang, J.H. Hsieh, Characterization of Cu2O and Cu2O-Ag2O thin films synthesized byplasma oxidation, Vacuum 118 (2015) 147-151.
DOI: 10.1016/j.vacuum.2015.02.010
Google Scholar
[51]
M. T. Awayiz, E. T Salim, Silver oxide nanoparticle, effect of chemical interaction temperatures on structural properties and surface roughness, AIP Conference Proceedings, 2213(1) (2020) 020247.
DOI: 10.1063/5.0000215
Google Scholar
[52]
M. Y. Ghadban, K. S Shibib, M. J. Abdulrazzaq, Analytical model of transient thermal effects in microchip laser crystal, AIP Conference Proceedings 2213(1) (2020) 020179.
DOI: 10.1063/5.0000277
Google Scholar