Pole Figure Analysis of Graphite Material

Article Preview

Abstract:

Graphite is a versatile material which is also used in various load bearing applications such as thrust bearings and dies for mechanical pressing such as hot pressing. Natural graphite has anisotropic layered structure which reduces its (compressive) strength in axes which are not parallel to c-axis. To increase strength, isotropy is introduced in graphite structure by breaking down its layers and minimizing grain size. We performed an in-depth characterization of relative aniostropy in graphite using pole figure density mapping. Locally available graphite samples were characterized by XRD and pole figures/3-D orientation distribution function (ODF). SEM and hardness testing were also performed to substantiate the pole density method. Results show that it is possible to characterize (qualitative/quantitative) isotropy or lack thereof in graphite by correlating it with the distribution of crystallinity/pole density mapping of (002) poles and 3D ODF figures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-136

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bonnissel, L. Luo, D. Tondeur, Compacted exfoliated natural graphite as heat conduction medium, Carbon 39, No. 14 (2001) p.2151–2161.

DOI: 10.1016/s0008-6223(01)00032-x

Google Scholar

[2] W. Yan, D. Jiang, X. Yuan, B. Zhou, F. Lin, A novel design of a high-strength high-temperature graphite die, Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. 233, No. 1 (2018) pp.138-146.

Google Scholar

[3] J. L. Wang, C. Zhang, Y. L. Wang, D. P. Wang, Q. Jia, Y. H. Cui, X. Y. Yuan, Preparation and Experimental Study of Graphite Material for Water Lubricated Thrust Bearing of Nuclear Main Pump, Mater. Sci. Forum 932 (2018) p.102–106.

DOI: 10.4028/www.scientific.net/msf.932.102

Google Scholar

[4] A. Gopalan, S. Sunil, C. Gupta, R. Singh, A. Basak, I. Dulera, Tensile and compressive Behaviour of high density graphite from 25-900°C for nuclear applications, inis.iaea.org, (2022) Information on https://inis.iaea.org/search/search.aspx?orig_q=RN:52066989.

Google Scholar

[5] M. Inagaki, F. Kang, M. Toyoda, H. Konno, Advanced Materials Science and Engineering of Carbon, second ed., Elsevier, Inc., (2014).

Google Scholar

[6] Z. He, J. Song, Z. Wang, X. Guo, Z. Liu, T. Marrow, Comparison of ultrafine-grain isotropic graphite prepared from microcrystalline graphite and pitch coke, Fuel 290 (2021) p.120055.

DOI: 10.1016/j.fuel.2020.120055

Google Scholar

[7] M. Ishihara, J. Sumita, T. Shibata, T. Iyoku, T. Oku, Principle design and data of graphite components" Nucl. Eng. Des. 233, No. 1-3 (2004) p.251–260.

DOI: 10.1016/j.nucengdes.2004.08.012

Google Scholar

[8] D. Ariosa, F. Elhordoy, E. A. Dalchiele, R. E. Marotti, C. Stari, Texture vs morphology in ZnOnano-rods: On the x-ray diffraction characterization of electrochemically grown samples, J. Appl. Phys. 110, No. 12 (2011) p.124901.

DOI: 10.1063/1.3669026

Google Scholar

[9] F. Junwei, A General Approach to Determine Texture Patterns Using Pole Figure J. Mater. Res. Technol. 14 (2021) p.1284–1291.

Google Scholar

[10] B. J. Marsden, M. Haverty, W. Bodel, G. N. Hall, A. N. Jones, P. M. Mummery, M. Treifi, Dimensional change, irradiation creep and thermal/mechanical property changes in nuclear graphite, Int. Mater. Rev. 61, No. 3 (2016) p.155–182.

DOI: 10.1080/09506608.2015.1136460

Google Scholar

[11] K. Shen, X. Cao, Z. Huang, W. Shen, F. Kang, Microstructure and thermal expansion behavior of natural microcrystalline graphite, Carbon 177 (2021) pp.90-96.

DOI: 10.1016/j.carbon.2021.02.055

Google Scholar

[12] Z. He, P. Lian, J. Song, D. Zhang, Z. Liu, Q. Guo, Microstructure and Properties of Fine-Grained Isotropic Graphite Based on Mixed Fillers for Application in Molten Salt Breeder Reactor, J. Nucl. Mater. 511 (2018) p.318–327.

DOI: 10.1016/j.jnucmat.2018.09.039

Google Scholar

[13] D. Liu, B. Gludovatz, H. S. Barnard, M. Kuball, R. O. Ritchie, Damage Tolerance of Nuclear Graphite at Elevated Temperatures, Nat. Commun. 8 (2017).

DOI: 10.1038/ncomms15942

Google Scholar