[1]
M. Bonnissel, L. Luo, D. Tondeur, Compacted exfoliated natural graphite as heat conduction medium, Carbon 39, No. 14 (2001) p.2151–2161.
DOI: 10.1016/s0008-6223(01)00032-x
Google Scholar
[2]
W. Yan, D. Jiang, X. Yuan, B. Zhou, F. Lin, A novel design of a high-strength high-temperature graphite die, Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. 233, No. 1 (2018) pp.138-146.
Google Scholar
[3]
J. L. Wang, C. Zhang, Y. L. Wang, D. P. Wang, Q. Jia, Y. H. Cui, X. Y. Yuan, Preparation and Experimental Study of Graphite Material for Water Lubricated Thrust Bearing of Nuclear Main Pump, Mater. Sci. Forum 932 (2018) p.102–106.
DOI: 10.4028/www.scientific.net/msf.932.102
Google Scholar
[4]
A. Gopalan, S. Sunil, C. Gupta, R. Singh, A. Basak, I. Dulera, Tensile and compressive Behaviour of high density graphite from 25-900°C for nuclear applications, inis.iaea.org, (2022) Information on https://inis.iaea.org/search/search.aspx?orig_q=RN:52066989.
Google Scholar
[5]
M. Inagaki, F. Kang, M. Toyoda, H. Konno, Advanced Materials Science and Engineering of Carbon, second ed., Elsevier, Inc., (2014).
Google Scholar
[6]
Z. He, J. Song, Z. Wang, X. Guo, Z. Liu, T. Marrow, Comparison of ultrafine-grain isotropic graphite prepared from microcrystalline graphite and pitch coke, Fuel 290 (2021) p.120055.
DOI: 10.1016/j.fuel.2020.120055
Google Scholar
[7]
M. Ishihara, J. Sumita, T. Shibata, T. Iyoku, T. Oku, Principle design and data of graphite components" Nucl. Eng. Des. 233, No. 1-3 (2004) p.251–260.
DOI: 10.1016/j.nucengdes.2004.08.012
Google Scholar
[8]
D. Ariosa, F. Elhordoy, E. A. Dalchiele, R. E. Marotti, C. Stari, Texture vs morphology in ZnOnano-rods: On the x-ray diffraction characterization of electrochemically grown samples, J. Appl. Phys. 110, No. 12 (2011) p.124901.
DOI: 10.1063/1.3669026
Google Scholar
[9]
F. Junwei, A General Approach to Determine Texture Patterns Using Pole Figure J. Mater. Res. Technol. 14 (2021) p.1284–1291.
Google Scholar
[10]
B. J. Marsden, M. Haverty, W. Bodel, G. N. Hall, A. N. Jones, P. M. Mummery, M. Treifi, Dimensional change, irradiation creep and thermal/mechanical property changes in nuclear graphite, Int. Mater. Rev. 61, No. 3 (2016) p.155–182.
DOI: 10.1080/09506608.2015.1136460
Google Scholar
[11]
K. Shen, X. Cao, Z. Huang, W. Shen, F. Kang, Microstructure and thermal expansion behavior of natural microcrystalline graphite, Carbon 177 (2021) pp.90-96.
DOI: 10.1016/j.carbon.2021.02.055
Google Scholar
[12]
Z. He, P. Lian, J. Song, D. Zhang, Z. Liu, Q. Guo, Microstructure and Properties of Fine-Grained Isotropic Graphite Based on Mixed Fillers for Application in Molten Salt Breeder Reactor, J. Nucl. Mater. 511 (2018) p.318–327.
DOI: 10.1016/j.jnucmat.2018.09.039
Google Scholar
[13]
D. Liu, B. Gludovatz, H. S. Barnard, M. Kuball, R. O. Ritchie, Damage Tolerance of Nuclear Graphite at Elevated Temperatures, Nat. Commun. 8 (2017).
DOI: 10.1038/ncomms15942
Google Scholar