Temperature Effect on Deformation Response in Austenitic Stainless Steel

Article Preview

Abstract:

Stress-strain behavior of austenitic stainless steel grade AISI 304 was investigated by means of uniaxial tensile tests and magneto-phase analysis. The test materials were strained in tension within the temperature range of-100 ≤ T ≤ +100 °C. According to the results, intensive strain hardening occurs in austenitic stainless steel when strain-induced α’- martensite is present in the material, and stress-strain behavior is associated with the increase yield strength and tensile strength with decreasing temperature. The analysis of the hardening kinetics reveals that kinetics are affected by the temperature and by the amount of α’- martensite content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-108

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Borek, T. Tanski, Z. Brytan, Austenitic Stainless Steels - New Aspects. 1st ed., IntechOpen, London, (2017).

DOI: 10.5772/67935

Google Scholar

[2] J. Beddoes, J.G. Parr, Introduction to Stainless Steels, 3rd ed., ASM International, OH, (1999).

Google Scholar

[3] M.J. Klein, The effect of temperature on stacking fault energies derived from X-ray diffraction analyses, Scripta Metal. 1 (1967) 65-69.

DOI: 10.1016/0036-9748(67)90016-6

Google Scholar

[4] R.E. Schramm, R.P. Reed, Stacking fault energies of seven commercial austenitic stainless steels, Metal. Trans. A. 6 (1971) 1345-1351.

DOI: 10.1007/bf02641927

Google Scholar

[5] P.C. Maxwell, A. Goldberg, J.C. Shyne, Influence of martensite formed during deformation on the mechanical behavior of Fe-Ni-C Alloys, Metal. Trans. 5 (1971) 1319-1324.

DOI: 10.1007/bf02646614

Google Scholar

[6] Z. Nishiyama, K. Shimizu, S. Morikawa, Transmission electron microscopic observation of the martensite transformation in 304-type stainless steel, J. Jap. Inst. Metal. 27 (1963) 497-502.

DOI: 10.2320/jinstmet1952.27.10_497

Google Scholar

[7] G.B. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metal. Trans. A. 6 (1975) 791-795.

Google Scholar

[8] J. Wan, S. Chen, Z. Xu, The influence of temperature on stacking fault energy in Fe-based alloys. Sci. China Ser. E: Tech. Sci. 44 (2001) 345-352.

DOI: 10.1007/bf02916685

Google Scholar

[9] T.S. Byun, On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels, Acta Mater. 51 (2003) 3063-3071.

DOI: 10.1016/s1359-6454(03)00117-4

Google Scholar

[10] J. Talonen, P. Nenonen, G. Pape, G., H. Hänninen, Effect of strain rate on the strain-induced γ, → α'-martensite transformation and mechanical properties of austenitic stainless steels, Met. Mater. Tran. A. 36 (2005) 421-432.

DOI: 10.1007/s11661-005-0313-y

Google Scholar

[11] A.K. De, J.G. Speer, D.K. Matlock, Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel, Met. Mater. Tran. A. 37 (2006) 1875-1886.

DOI: 10.1007/s11661-006-0130-y

Google Scholar

[12] J. Talonen, H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta Mater. 55 (2007) 6108-6118.

DOI: 10.1016/j.actamat.2007.07.015

Google Scholar

[13] G.R. Lehnhoff, K.O. Findley, The martensitic transformation and strain hardening behavior of austenitic steels during fatigue and tensile loading, J. Mater. 66 (2014) 56-764.

DOI: 10.1007/s11837-014-0909-z

Google Scholar

[14] A. Das, S. Tarafder, Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel, Int. J. Plast. 25 (2009) 2222-2247.

DOI: 10.1016/j.ijplas.2009.03.003

Google Scholar

[15] S.A. Barannikova, A.M. Nikonova, S.V. Kolosov, Studying deformation behaviors in austenitic stainless steels within a temperature range of 143 K < T < 420 K, PNRPU Mechanics Bulletin. 2021 (2021) 22-30.

DOI: 10.15593/perm.mech/2021.1.03

Google Scholar

[16] S. Barannikova, Y. Li, Kinetics of deformation bands in a low-carbon steel — stainless steel bimetal, Metalurg. 60 (2021) 59-62.

Google Scholar

[17] A.M. Nikonova, Y.V. Li, S.A. Barannikova, Plastic strain localization in stainless steel, AIP Conf. Proc. 2310 (2020) 020227.

Google Scholar

[18] A.M. Nikonova, Y.V. Li, S.A. Barannikova, Deformation behavior of stainless steel under uniaxial tension, J. Phys.: Conf. Ser. 1611 (2020) 012003.

DOI: 10.1088/1742-6596/1611/1/012003

Google Scholar

[19] J. Pelleg, Mechanical Properties of Materials, 1st ed., Springer, Dordrecht, (2013).

Google Scholar

[20] C. Zheng, W. Yu, Effect of low-temperature on mechanical behavior for an AISI 304 austenitic stainless steel, Mater. Sci. Eng. A. 710 (2018) 359-365.

DOI: 10.1016/j.msea.2017.11.003

Google Scholar

[21] S. Curtze, V.-T. Kuokkala, A. Oikari, J. Talonen, H. Hänninen, Thermodynamic modeling of the stacking fault energy of austenitic steels, Acta Mater. 59 (2011) 1068-1076.

DOI: 10.1016/j.actamat.2010.10.037

Google Scholar