A Mixed FEM for Simulating Laminated Glass Beam Stiffness and Strength

Article Preview

Abstract:

This contribution shows the effectiveness of a simple mixed Finite Element Model (FEM) for simulating the mechanical behavior of structural Laminated Glass (LG) beams, by numerically reproducing several laboratory tests of small LG specimens taken from literature. The proposed mixed model adopts small displacements and Euler-Bernoulli beam hypotheses and assumes glass layers displacements and polymeric interlayer shear actions as independent fields. Numerical simulations show that such a simple model is able to correctly reproduce LG specimens’ initial stiffness and first peak strength and can be adopted for design purposes of LG elements at a larger scale

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-96

Citation:

Online since:

October 2022

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Sobek, Glass structures, Struct. Eng. 83(7) (2005) 32-36.

Google Scholar

[2] H. S. Norville, K.W. King, J L. Swofford, Behavior and strength of laminated glass, J. Eng Mech 124(1) (1998) 46-53.

DOI: 10.1061/(asce)0733-9399(1998)124:1(46)

Google Scholar

[3] C.V.G. Vallabhan, Y C. Das, M. Ramasamudra, Properties of PVB interlayer used in laminated glass, J. Mat. Civil Eng, 4(1) (1992) 71-77.

DOI: 10.1061/(asce)0899-1561(1992)4:1(71)

Google Scholar

[4] D. Baraldi, A simple mixed finite element model for laminated glass beams, Compos. Struct, 194 (2018) 611-623.

DOI: 10.1016/j.compstruct.2018.03.028

Google Scholar

[5] L. Galuppi, G. Royer-Carfagni, Effective thickness of laminated glass beams: New expression via a variational approach, Eng. Struct, 38, (2012) 53-67.

DOI: 10.1016/j.engstruct.2011.12.039

Google Scholar

[6] M.N. Newmark, C.P. Siess, I.M. Viest, Tests and analysis of composite beams with incomplete interaction, Proceedings Society for Experimental Stress Analysis, New York, USA, 1951, vol. 9, no. 1, p.75–92.

Google Scholar

[7] J.H. Nielsen, J. Belis, C. Louter, M. Overend, J. Schneider, Celebrating the international year of glass, Glass Struct. Eng, 7(1) (2022).

DOI: 10.1007/s40940-022-00173-1

Google Scholar

[8] D. Baraldi, A simple mixed finite element model for composite beams with partial interaction, Compos. Mech. Comp. Appl. Int. J, 11(3) (2020) 187-207.

DOI: 10.1615/compmechcomputapplintj.2020034460

Google Scholar

[9] D. Baraldi, N. Tullini, Incremental Analysis of Elastoplastic Beams and Frames Resting on an Elastic Half-Plane, J. Eng. Mech, 143(9) (2017) 04017101.

DOI: 10.1061/(asce)em.1943-7889.0001331

Google Scholar

[10] R.A. Behr, J.E. Minor, M.P. Linden, Load duration and interlayer thickness effects on laminated glass, J. Struct. Eng, 112(6) (1986) 1441-1453.

DOI: 10.1061/(asce)0733-9445(1986)112:6(1441)

Google Scholar

[11] S. Briccoli Bati, G. Ranocchiai, C. Reale, L. Rovero, Time-Dependent Behavior of Laminated Glass, J. Mater. Civil Eng, 22(4) (2010) 389-396.

DOI: 10.1061/(asce)mt.1943-5533.0000032

Google Scholar

[12] S.T. Akter, M.S. Khani, Characterisation of laminated glass for structural applications, Master Thesis, Linneuniversitetet, (2013).

Google Scholar

[13] G. Castori, E. Speranzini, Structural analysis of failure behavior of laminated glass, Compos. B Eng, 125 (2017) 89-99.

DOI: 10.1016/j.compositesb.2017.05.062

Google Scholar

[14] D. Baraldi, A. Cecchi, P. Foraboschi, Broken tempered laminated glass: Non-linear discrete element modelling, Compos. Struct, 140 (2016) 278-295.

DOI: 10.1016/j.compstruct.2015.12.050

Google Scholar