Effective Thermal Conductivity of Structured Porous Medium: Numerical Study

Article Preview

Abstract:

The paper presents a numerical study of thermal conductivity of porous structures using the Ansys software package. Unlike the well-known porous materials used in construction and engineering, it is proposed to use porous materials with an ordered law of cavity placement. The porous material proposed is formed by dividing the volume into cubes of equal size with a spherical cavity placed in the center of each cube. The numerical calculation of an effective thermal conductivity coefficient of a porous medium is performed using the Ansys Mechanical computer modeling tool. The values obtained are compared with solutions based on classical methods for determining the effective thermal conductivity of porous materials. A dependency graph of effective thermal conductivity in a porous material based on pores geometric parameters (distance between cavities, diameter of cavities), as well as an analytical dependence to obtain the effective thermal conductivity value is presented. Additive technologies available today provide producing the proposed porous material with an ordered law of cavity placement with any accuracy and any pore geometric parameters. Such materials open up wide opportunities for engineers, especially in the field of thermal power engineering, because it has predictable thermophysical and mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-76

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Askari, S. Taheri, S. Hejazi, Thermal conductivity of granularporous media: A pore scale modeling approach, AIP Advancesю 5(9) (2015) 097106.

DOI: 10.1063/1.4930258

Google Scholar

[2] R. Song, J. Liu, M. Cui, A new method to reconstruct structured meshmodel from micro-computed tomography images of porous media andits application, International Journal of Heat and Mass Transferю 109 (2017) 705-715.

DOI: 10.1016/j.ijheatmasstransfer.2017.02.053

Google Scholar

[3] A.E. Khabbazi, J. Ellis, A. Bazylak, Developing a new formof the kozeny-carman parameter for structured porous media throughlattice-boltzmann modeling, Computers and Fluids. 75 (2013) 35-41.

DOI: 10.1016/j.compfluid.2013.01.008

Google Scholar

[4] K. Yazdchi, S. Srivastava, S. Luding, Microstructural effects on thepermeability of periodic fibrous porous media, International Journal of Multiphase Flow. 37(8) (2011) 956-966.

DOI: 10.1016/j.ijmultiphaseflow.2011.05.003

Google Scholar

[5] M. Ezzatabadipour, H. Zahedi, M. Keshtkar, Fluid flow simulationin a random elliptical porous medium by using the lattice boltzmannmethod, Journal of Applied Mechanics and Technical Physics. 58(3) (2017) 379-385.

DOI: 10.1134/s0021894417030014

Google Scholar

[6] R. Mohebbi, A. Delouei, A. Jamali, M. Izadi, A. Mohamad, Pore-scale simulation of non-newtonian power-law fluid flow and forcedconvection in partially porous media: Thermal lattice boltzmannmethod, Physica A: Statistical Mechanics and its Applications. 525 (2019) 642-656.

DOI: 10.1016/j.physa.2019.03.039

Google Scholar

[7] S. Nazari, D. Toghraie, Numerical simulation of heat transfer and fluidflow of water-cuo nanofluid in a sinusoidal channel with a porousmedium, Physica E: Low-Dimensional Systems and Nanostructures. 87 (2017) 134-140.

DOI: 10.1016/j.physe.2016.11.035

Google Scholar

[8] I. Collins, J. Weibel, L. Pan, S. Garimella, A permeable-membranemicrochannel heat sink made by additive manufacturing, International Journal of Heat and Mass Transfer. 131 (2019) 1174-1183.

DOI: 10.1016/j.ijheatmasstransfer.2018.11.126

Google Scholar

[9] G. Huang, Z. Min, L. Yang, P.-X. Jiang, M. Chyu, Transpirationcooling for additive manufactured porous plates with partition walls, International Journal of Heat and Mass Transfer. 124 (2018) 1076-1087.

DOI: 10.1016/j.ijheatmasstransfer.2018.03.110

Google Scholar

[10] A. Mihalko, J. Felice, A. Madura, D. Piovesan, Use of polymer scaf-folding and electroplating to create porous metal structures, Journal of Engineering Materials and Technology, Transactions of the ASME. 141(3) (2019) 034501.

DOI: 10.1115/1.4042660

Google Scholar

[11] Q. Xiong, H. Zahiri poor, M. Izadi, E. Assareh, Natural heat exchangein inhomogeneous porous medium using linear and quadratic porositydistribution, International Journal of Thermal Sciences. 161 (2021) 106731.

DOI: 10.1016/j.ijthermalsci.2020.106731

Google Scholar

[12] J. Lu, A. Kan, W. Zhu, Y. Yuan, Numerical investigation on effectivethermal conductivity of fibrous porous medium under vacuum usinglattice-boltzmann method, International Journal of Thermal Sciences. 160 (2021) 106682.

DOI: 10.1016/j.ijthermalsci.2020.106682

Google Scholar

[13] I. Kudinov, V. Kudinov, E. Kotova, A. Eremin, On one method of solv-ing nonstationary boundary-value problems, Journal of Engineering Physics and Thermophysics. 90(6) (2017) 1317-1327.

DOI: 10.1007/s10891-017-1689-4

Google Scholar

[14] A. Eremin, E. Stefanyuk, O. Kurganova, V. Tkachev, M. Skvortsova, A generalized function in heat conductivity problems for multilayerstructures with heat sources, Journal of Machinery Manufacture and Reliability. 47(3) (2018) 249-255.

DOI: 10.3103/s1052618818030056

Google Scholar

[15] V. Kudinov, A. Eremin, E. Stefanyuk, Analytical solutions of heat-conduction problems with time-varying heat-transfer coefficients, Journal of Engineering Physics and Thermophysics. 88(3) (2015) 688-698.

DOI: 10.1007/s10891-015-1238-y

Google Scholar

[16] H. Shokouhmand, P. Bagherzade, M. Fazli, A. Shomali, Thermaldispersion effects on heat transfer of laminar gas flow in a microtubefilled with porous medium, International Journal of Thermal Sciences. 122 (2017) 281-291.

DOI: 10.1016/j.ijthermalsci.2017.09.002

Google Scholar

[17] A. Popov, P. Iglin, K. Gubareva, T. Iglina, A. Doronin, Study oftemperature fields in a ball bearings bodies under boundary conditionsof the third kind. 791 (2020) 012017.

DOI: 10.1088/1757-899x/791/1/012017

Google Scholar

[18] A. Eremin, K. Trubitsyn, A. Popov, K. Gubareva, Development of a mathematical model for heat transfer of moving fluids in a plane-parallel heater, 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2020.

DOI: 10.1109/fareastcon50210.2020.9271234

Google Scholar

[19] Information on https://totalz.ru/produktsiya/3d-printer-anyform-l250-g3/.

Google Scholar