[1]
A. Bejan, Convection Heat Transfer, second ed., Wiely, New York, 1993, p.176.
Google Scholar
[2]
B. Gebhart, L. Pera, The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion, Int. J. Heat Mass Transfer. 14 (1971) 2025-2050.
DOI: 10.1016/0017-9310(71)90026-3
Google Scholar
[3]
L.N. Tao, On combined free and forced convection in channels, J. Heat. Transf. 82(3) (1960) 233–238.
DOI: 10.1115/1.3679915
Google Scholar
[4]
C. H. Cheng, H.S. Kou, W.H. Huang, Flow reversal and heat transfer of fully developed mixed convection in vertical channels, J. Thermo Phys. 4(3) (1990) 375–383.
DOI: 10.2514/3.190
Google Scholar
[5]
P.P. Kaur, S.P. Agrawal, A. Kumar, Analytical study of MHD on laminar mixed convection of Newtonian fluid between vertical parallel plates through channel, Int. J. Multidispl. Res. Adv. Eng. 6(1)(2014) 85–98.
DOI: 10.46300/91010.2020.14.3
Google Scholar
[6]
Sehra, S.U. Haq, S.I.A. Shah, K.S. Nisar, S.U. Jan, I. Khan, Convection heat mass transfer and MHD flow over a vertical plate with chemical reaction, arbitrary shear stress and exponential heating. Sci Rep 11 (2021). https://doi.org/10.1038/s41598-021-81615-8.
DOI: 10.1038/s41598-021-81615-8
Google Scholar
[7]
A.J. Chamkha, Unsteady MHD convective heat and mass transfer past a semi-infinite vertical Permeable moving plate with heat absorption, Int. J. Eng. Sci. 42 (2004) 217–230.
DOI: 10.1016/s0020-7225(03)00285-4
Google Scholar
[8]
Ch. Ram Reddy, O. Surender, Ch. Venkata Rao, T. Pradeepa, Adomian decomposition method for Hall and ion-slip effects on mixed convection flow of a chemically reacting Newtonian fluid between parallel plates with heat generation/absorption, Propulsion and Power Research, 6(4)(2017) 296–306.
DOI: 10.1016/j.jppr.2017.11.001
Google Scholar
[9]
O.D, Makinde, A. Ogulu, The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field. Chem. Engin. Comm. 195(12) (2008) 1575 -1584.
DOI: 10.1080/00986440802115549
Google Scholar
[10]
P.S. Gupta, A.S. Gupta, Heat and mass transfer on a stretching sheet with suction and blowing. Can. J. Chem. Eng. 55(1977) 744-746.
DOI: 10.1002/cjce.5450550619
Google Scholar
[11]
M.M. Rashidi, B. Rostami, F. Navid, S. Abbasbandy, Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng J, 5(3)(2014) 901–912.
DOI: 10.1016/j.asej.2014.02.007
Google Scholar
[12]
D. Srinivasacharya, G. Swamy Reddy, Chemical reaction and radiation effects on mixed convection heat and mass transfer over a vertical plate in power-law fluid saturated porous medium, J. Egypt. Math. Soc. (2015) http://dx.doi.org/ 10.1016/j.joems.2014.10.001).
DOI: 10.1002/htj.21058
Google Scholar
[13]
A.N. Ameer, M.V. Krishna, A.F. Aljohani, Heat and mass transfer in MHD boundary layer flow of a second-grade fluid past an infinite vertical permeable surface, Heat Transfer, 50(6) (2021) 6022-6042. https://doi.org/10.1002/htj.22160.
DOI: 10.1002/htj.22160
Google Scholar
[14]
O.D. Makinde, Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation, Meccanica 47(5) (2012) 1173– 1184.
DOI: 10.1007/s11012-011-9502-5
Google Scholar
[15]
S.P. Anjalidevi, R. Kandasamy, Effects of chemical reaction, heat and mass transfer on laminar flow along a semi-infinite horizontal plate, Heat.MassTransf. 35(6)(1999) 465–467.
DOI: 10.1007/s002310050349
Google Scholar
[16]
Z. Uddin, M. Kumar, S. Harmand, Influence of thermal radiation and heat generation/ absorption on MHD heat transfer flow of a micropolar fluid past a wedge with hall and ion-slip currents, Therm. Sci. 18(2) (2014) 489–502.
DOI: 10.2298/tsci110712085u
Google Scholar
[17]
A.J. Chamkha, T. Grosan, I. Pop, Fully developed free convection of a micropolar fluid in a Vertical channel, Int. Comm. Heat. Mass Transf. 29(8) (2002) 1119–1127.
DOI: 10.1016/s0735-1933(02)00440-2
Google Scholar
[18]
S. S. Motsa, S. Shateyi, The effects of chemical reaction, hall, and ion-slip currents on mhd micropolar fluid flow with thermal diffusivity using a novel numerical technique, Journal of Applied Mathematics.
DOI: 10.1155/2012/689015
Google Scholar
[19]
A.A. Opanuga, S.O. Adesanya, H.I. Okagbue, O.O. Agboola, Impact of Hall Current on the Entropy Generation of Radiative MHD Mixed Convection Casson Fluid, Int. J. Appl. Comput. Math. 2020 https://doi.org/10.1007/s40819-020-0790-0.
DOI: 10.1007/s40819-020-0790-0
Google Scholar
[20]
L. Pera, B. Gebhart, Natural convection boundary layer flow over horizontal and slightly inclined surfaces, International Journal of Heat Mass Transfer 16 (6) (1973) 1131.
DOI: 10.1016/0017-9310(73)90126-9
Google Scholar
[21]
T.S. Chen, C.F. Yuh, Combined heat and mass transfer in mixed convection along vertical and inclined plates, International Journal of Heat Mass Transfer 23 (1980) 527.
DOI: 10.1016/0017-9310(80)90094-0
Google Scholar
[22]
S. Das, R. N. Jana, O. D. Makinde, Radiation effect on a fully developed mixed convection in a vertical channel filled with nanofluids, J. Nanofluids 4(3) (2015) 362–368.
DOI: 10.1166/jon.2015.1155
Google Scholar
[23]
N. Joshi, A.K. Pandey, H. Upreti, M. Kumar, Mixed convection flow of magnetic hybridnanofluid over a bidirectional porous surfacewith internal heat generation and a higher‐order chemical reaction, Heat Transfer. (2020) 1–22. https://doi.org/10.1002/htj.2204622.
DOI: 10.1002/htj.22046
Google Scholar
[24]
D. Srinivasacharya, K. Kaladhar, Mixed convection flow of couple stress fluid between Parallel vertical plates with Hall and ion-slip effects, Comm. Nonlinear Sci. Numer. Simul.17 (6) (2012) 2447-2462.
DOI: 10.1016/j.cnsns.2011.10.006
Google Scholar
[25]
D.F. Fairbanks, C.R. Wike, Diffusion and chemical reaction in an isothermal laminar flow along a soluble flat plate, Ind. Eng. Chem. Res. 42 (1950) 471.
Google Scholar
[26]
U.N. Das, R. Deka, V.M. Soundalgekar, Effects of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction, J. Forshung Im Ingenieurwesen-Engineering Research Bd 60 (1994) 284.
DOI: 10.1007/bf02601318
Google Scholar
[27]
H.I. Andersson, O.R. Hansen, B. Holmedal, Diffusion of a chemically reactive species from a stretching sheet, Int. J. Heat Mass Transfer 37 (1994) 659.
DOI: 10.1016/0017-9310(94)90137-6
Google Scholar
[28]
K. Vajravelu, A. Hadjinicalaou, Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream, Int. J. Eng. Sci. 35 (1997) 1237.
DOI: 10.1016/j.ijengsci.2006.10.002
Google Scholar
[29]
S. Alireza, V. Sahai, Heat transfer in developing magnetohydrodynamic Poiseuille flow and variable transport properties, Int. J. Heat. Mass Transf. 33(8)(1990)171–172.
DOI: 10.1016/0017-9310(90)90026-q
Google Scholar
[30]
M.A. Seddeek, A.A. Darwish, M.S. Abdelmeguid, Effects of chemical reaction and variable viscosity on hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media with radiation, Comm. Nonlinear Sci. Numer. Simul. 12(2)(2007)195–213.
DOI: 10.1016/j.cnsns.2006.02.008
Google Scholar
[31]
H. Upreti, A.K. Pandey, M. Kumar, Unsteady squeezing flow of magnetic hybrid nanofluids within parallel plates and entropy generation, Heat Transfer, 50(1)(2020) 105-125. https://doi.org/10.1002/htj.21994.
DOI: 10.1002/htj.21994
Google Scholar
[32]
N. Joshi, H. Upreti, A. K. Pandey, M. Kumar, Heat and mass transfer assessment of magnetic hybridnanofluid flow via bidirectional porous surface with volumetric heat generation, Int. J. Appl. Comput. Math. 7 (2021). https://doi.org/10.1007/s40819-021-00999-3.
DOI: 10.1007/s40819-021-00999-3
Google Scholar
[33]
V.K. Stokes, Couple-stresses in fluids, Phys. Fluids 9 (1966)1709–1715.
Google Scholar
[34]
E.F.E.I. Shehawey, K.H.S. Mekheimer, Couple-stresses in peristaltic transport of fluids, J. Phys. D: Appl. Phys. 27 (1994) 1163–1170.
DOI: 10.1088/0022-3727/27/6/014
Google Scholar
[35]
E. Walicki, A. Walicka, Inertial effect in the squeeze film of couple-stress fluids in biological bearings, Int. J. Appl. Mech. Eng. 4 (1999) 363–373.
Google Scholar
[36]
D. Pal, N. Rudraiah, R. Devanathan, A couple stress model of blood flow in the microcirculation, Bull. Math. Biol. 50 (1988) 329–344.
DOI: 10.1016/s0092-8240(88)90001-8
Google Scholar
[37]
N.C. Das, A Study of Optimum Load-Bearing Capacity for Slider Bearing Lubricated With Couple Stress Fluids in Magnetic Field, Tribology International 31 (1998) 393-400.
DOI: 10.1016/s0301-679x(98)00050-4
Google Scholar
[38]
Sunil, R.C. Sharma and R.S. Chandel, (2002). On superposed couple-stress fluids in porous medium in hydromagnetics. Zeitschrift f¨ur Naturforschung 57a 955–960.
DOI: 10.1515/zna-2002-1208
Google Scholar
[39]
D. Tripathi, A. Yadav and A.O. Bég, Electro‐osmotic flow of couple stress fluids in a micro‐channel propagated by peristalsis. Eur Phys J Plus. 132 (2017)173‐185.
DOI: 10.1140/epjp/i2017-11416-x
Google Scholar
[40]
U.S. Mahabaleshwar, I.E. Sarris, A.A. Hill, G. Lorenzini and I. Pop, An MHD couple stress fluid due to a perforated sheet undergoing linear stretching with heat transfer. Int J Heat MassTransfer. 105 (2017) 157‐167.
DOI: 10.1016/j.ijheatmasstransfer.2016.09.040
Google Scholar
[41]
S.O. Adesanya, R.S. Lebelo, and K.C. Moloi, Evaluation of Heat Irreversibility in a Thin Film Flow of Couple Stress Fluid on a Moving Belt, Advances in Mathematical Physics 2018 https://doi.org/10.1155/2018/6237592.
DOI: 10.1155/2018/6237592
Google Scholar
[42]
S.O. Adesanya, C.R. Makhalemele, L. Rundora, Natural convection flow of heat generating hydromagnetic couple stress fluid with time periodic boundary conditions, Alexandria Eng. J. (2017) http://dx.doi.org/10.1016/j.aej.2017.04.006.
DOI: 10.1016/j.aej.2017.04.006
Google Scholar
[43]
S.O. Adesanya, A.S. Onanaye, O.G. Adeyemi, M. Rahimi-Gorji, I.M. Alarifi, Evaluation ofheat irreversibility in couple stress falling liquid films along heated inclined substrate, Journal of Cleaner Production (2019).
DOI: 10.1016/j.jclepro.2019.117608
Google Scholar
[44]
J.A. Gbadeyana, A.A. Opanuga, Inherent irreversibility analysis in a buoyancy induced magnetohydrodynamic couple stress fluid, Journal of Mathematics and Computer Science, 18 (2018) 411–422.
DOI: 10.22436/jmcs.018.04.03
Google Scholar
[45]
Z. Shah, P. Kumam, A. Dawar, E.O. Alzahrani and P. Thounthong, Study of the Couple Stress Convective Micropolar Fluid Flow in a Hall MHD Generator System, Front. Phys., 2019 https://doi.org/10.3389/fphy.2019.00171.
DOI: 10.3389/fphy.2019.00171
Google Scholar
[46]
M. Kumar, G.J. Reddy, N.N. Kumar, O.A. Bég, Application of differential transform method to unsteady free convective heat transfer of a couple stress fluid over a stretching sheet, Heat Transfer-Asian Research (2018) 1-19. https://doi.org/10.1002/htj.21396.
DOI: 10.1002/htj.21396
Google Scholar
[47]
A. Ishak, R. Nazar, Ioan Pop, Boundary layer flow and heat transfer over an unsteady stretching vertical surface, Meccanica, 44 (2009) 369–375. DOI 10.1007/s11012-008-9176-9.
DOI: 10.1007/s11012-008-9176-9
Google Scholar
[48]
K.A. Yih, Free convection on MHD coupled heat and mass transfer of a moving permeable vertical surface, Int. Comm. Heat Mass Transfer 26(1) (1999) 95-104.
DOI: 10.1016/s0735-1933(98)00125-0
Google Scholar