Unsteady Two Dimensional Mixed Convection MHD Couple Stress Fluid Flow through an Inclined Stretching Sheet with Chemical Reaction

Article Preview

Abstract:

In this work, the investigation has focused on the unsteady hydromagnetic mixed convection couple stress fluid through an inclined linearly stretching sheet. The model equations governing the flow are converted to ordinary differential equations employing appropriate similarity transformation variables. An efficient technique, Runge-Kutta 4th order (RK4) technique together with shooting method is deployed to tackle the dimensionless equations with relevant boundary conditions. The impacts of various parameters such as unsteadiness parameter , Hartman number , mixed convection parameter , concentration buoyancy parameter , angle of inclination , chemical reaction parameter and Schmidt number are analysed and discussed with plots. Fluid velocity decreases as the unsteadiness, Hartman number, Schmidt number, and chemical reaction parameters rise; while the angle of inclination, mixed convection, and concentration buoyancy parameters speed up the flow. Furthermore, the unsteadiness, angle of inclination and mixed convection parameters reduce fluid temperature, while all the parameters reduce flow concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-35

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bejan, Convection Heat Transfer, second ed., Wiely, New York, 1993, p.176.

Google Scholar

[2] B. Gebhart, L. Pera, The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion, Int. J. Heat Mass Transfer. 14 (1971) 2025-2050.

DOI: 10.1016/0017-9310(71)90026-3

Google Scholar

[3] L.N. Tao, On combined free and forced convection in channels, J. Heat. Transf. 82(3) (1960) 233–238.

DOI: 10.1115/1.3679915

Google Scholar

[4] C. H. Cheng, H.S. Kou, W.H. Huang, Flow reversal and heat transfer of fully developed mixed convection in vertical channels, J. Thermo Phys. 4(3) (1990) 375–383.

DOI: 10.2514/3.190

Google Scholar

[5] P.P. Kaur, S.P. Agrawal, A. Kumar, Analytical study of MHD on laminar mixed convection of Newtonian fluid between vertical parallel plates through channel, Int. J. Multidispl. Res. Adv. Eng. 6(1)(2014) 85–98.

DOI: 10.46300/91010.2020.14.3

Google Scholar

[6] Sehra, S.U. Haq, S.I.A. Shah, K.S. Nisar, S.U. Jan, I. Khan, Convection heat mass transfer and MHD flow over a vertical plate with chemical reaction, arbitrary shear stress and exponential heating. Sci Rep 11 (2021). https://doi.org/10.1038/s41598-021-81615-8.

DOI: 10.1038/s41598-021-81615-8

Google Scholar

[7] A.J. Chamkha, Unsteady MHD convective heat and mass transfer past a semi-infinite vertical Permeable moving plate with heat absorption, Int. J. Eng. Sci. 42 (2004) 217–230.

DOI: 10.1016/s0020-7225(03)00285-4

Google Scholar

[8] Ch. Ram Reddy, O. Surender, Ch. Venkata Rao, T. Pradeepa, Adomian decomposition method for Hall and ion-slip effects on mixed convection flow of a chemically reacting Newtonian fluid between parallel plates with heat generation/absorption, Propulsion and Power Research, 6(4)(2017) 296–306.

DOI: 10.1016/j.jppr.2017.11.001

Google Scholar

[9] O.D, Makinde, A. Ogulu, The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field. Chem. Engin. Comm. 195(12) (2008) 1575 -1584.

DOI: 10.1080/00986440802115549

Google Scholar

[10] P.S. Gupta, A.S. Gupta, Heat and mass transfer on a stretching sheet with suction and blowing. Can. J. Chem. Eng. 55(1977) 744-746.

DOI: 10.1002/cjce.5450550619

Google Scholar

[11] M.M. Rashidi, B. Rostami, F. Navid, S. Abbasbandy, Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng J, 5(3)(2014) 901–912.

DOI: 10.1016/j.asej.2014.02.007

Google Scholar

[12] D. Srinivasacharya, G. Swamy Reddy, Chemical reaction and radiation effects on mixed convection heat and mass transfer over a vertical plate in power-law fluid saturated porous medium, J. Egypt. Math. Soc. (2015) http://dx.doi.org/ 10.1016/j.joems.2014.10.001).

DOI: 10.1002/htj.21058

Google Scholar

[13] A.N. Ameer, M.V. Krishna, A.F. Aljohani, Heat and mass transfer in MHD boundary layer flow of a second-grade fluid past an infinite vertical permeable surface, Heat Transfer, 50(6) (2021) 6022-6042. https://doi.org/10.1002/htj.22160.

DOI: 10.1002/htj.22160

Google Scholar

[14] O.D. Makinde, Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation, Meccanica 47(5) (2012) 1173– 1184.

DOI: 10.1007/s11012-011-9502-5

Google Scholar

[15] S.P. Anjalidevi, R. Kandasamy, Effects of chemical reaction, heat and mass transfer on laminar flow along a semi-infinite horizontal plate, Heat.MassTransf. 35(6)(1999) 465–467.

DOI: 10.1007/s002310050349

Google Scholar

[16] Z. Uddin, M. Kumar, S. Harmand, Influence of thermal radiation and heat generation/ absorption on MHD heat transfer flow of a micropolar fluid past a wedge with hall and ion-slip currents, Therm. Sci. 18(2) (2014) 489–502.

DOI: 10.2298/tsci110712085u

Google Scholar

[17] A.J. Chamkha, T. Grosan, I. Pop, Fully developed free convection of a micropolar fluid in a Vertical channel, Int. Comm. Heat. Mass Transf. 29(8) (2002) 1119–1127.

DOI: 10.1016/s0735-1933(02)00440-2

Google Scholar

[18] S. S. Motsa, S. Shateyi, The effects of chemical reaction, hall, and ion-slip currents on mhd micropolar fluid flow with thermal diffusivity using a novel numerical technique, Journal of Applied Mathematics.

DOI: 10.1155/2012/689015

Google Scholar

[19] A.A. Opanuga, S.O. Adesanya, H.I. Okagbue, O.O. Agboola, Impact of Hall Current on the Entropy Generation of Radiative MHD Mixed Convection Casson Fluid, Int. J. Appl. Comput. Math. 2020 https://doi.org/10.1007/s40819-020-0790-0.

DOI: 10.1007/s40819-020-0790-0

Google Scholar

[20] L. Pera, B. Gebhart, Natural convection boundary layer flow over horizontal and slightly inclined surfaces, International Journal of Heat Mass Transfer 16 (6) (1973) 1131.

DOI: 10.1016/0017-9310(73)90126-9

Google Scholar

[21] T.S. Chen, C.F. Yuh, Combined heat and mass transfer in mixed convection along vertical and inclined plates, International Journal of Heat Mass Transfer 23 (1980) 527.

DOI: 10.1016/0017-9310(80)90094-0

Google Scholar

[22] S. Das, R. N. Jana, O. D. Makinde, Radiation effect on a fully developed mixed convection in a vertical channel filled with nanofluids, J. Nanofluids 4(3) (2015) 362–368.

DOI: 10.1166/jon.2015.1155

Google Scholar

[23] N. Joshi, A.K. Pandey, H. Upreti, M. Kumar, Mixed convection flow of magnetic hybridnanofluid over a bidirectional porous surfacewith internal heat generation and a higher‐order chemical reaction, Heat Transfer. (2020) 1–22. https://doi.org/10.1002/htj.2204622.

DOI: 10.1002/htj.22046

Google Scholar

[24] D. Srinivasacharya, K. Kaladhar, Mixed convection flow of couple stress fluid between Parallel vertical plates with Hall and ion-slip effects, Comm. Nonlinear Sci. Numer. Simul.17 (6) (2012) 2447-2462.

DOI: 10.1016/j.cnsns.2011.10.006

Google Scholar

[25] D.F. Fairbanks, C.R. Wike, Diffusion and chemical reaction in an isothermal laminar flow along a soluble flat plate, Ind. Eng. Chem. Res. 42 (1950) 471.

Google Scholar

[26] U.N. Das, R. Deka, V.M. Soundalgekar, Effects of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction, J. Forshung Im Ingenieurwesen-Engineering Research Bd 60 (1994) 284.

DOI: 10.1007/bf02601318

Google Scholar

[27] H.I. Andersson, O.R. Hansen, B. Holmedal, Diffusion of a chemically reactive species from a stretching sheet, Int. J. Heat Mass Transfer 37 (1994) 659.

DOI: 10.1016/0017-9310(94)90137-6

Google Scholar

[28] K. Vajravelu, A. Hadjinicalaou, Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream, Int. J. Eng. Sci. 35 (1997) 1237.

DOI: 10.1016/j.ijengsci.2006.10.002

Google Scholar

[29] S. Alireza, V. Sahai, Heat transfer in developing magnetohydrodynamic Poiseuille flow and variable transport properties, Int. J. Heat. Mass Transf. 33(8)(1990)171–172.

DOI: 10.1016/0017-9310(90)90026-q

Google Scholar

[30] M.A. Seddeek, A.A. Darwish, M.S. Abdelmeguid, Effects of chemical reaction and variable viscosity on hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media with radiation, Comm. Nonlinear Sci. Numer. Simul. 12(2)(2007)195–213.

DOI: 10.1016/j.cnsns.2006.02.008

Google Scholar

[31] H. Upreti, A.K. Pandey, M. Kumar, Unsteady squeezing flow of magnetic hybrid nanofluids within parallel plates and entropy generation, Heat Transfer, 50(1)(2020) 105-125. https://doi.org/10.1002/htj.21994.

DOI: 10.1002/htj.21994

Google Scholar

[32] N. Joshi, H. Upreti, A. K. Pandey, M. Kumar, Heat and mass transfer assessment of magnetic hybridnanofluid flow via bidirectional porous surface with volumetric heat generation, Int. J. Appl. Comput. Math. 7 (2021). https://doi.org/10.1007/s40819-021-00999-3.

DOI: 10.1007/s40819-021-00999-3

Google Scholar

[33] V.K. Stokes, Couple-stresses in fluids, Phys. Fluids 9 (1966)1709–1715.

Google Scholar

[34] E.F.E.I. Shehawey, K.H.S. Mekheimer, Couple-stresses in peristaltic transport of fluids, J. Phys. D: Appl. Phys. 27 (1994) 1163–1170.

DOI: 10.1088/0022-3727/27/6/014

Google Scholar

[35] E. Walicki, A. Walicka, Inertial effect in the squeeze film of couple-stress fluids in biological bearings, Int. J. Appl. Mech. Eng. 4 (1999) 363–373.

Google Scholar

[36] D. Pal, N. Rudraiah, R. Devanathan, A couple stress model of blood flow in the microcirculation, Bull. Math. Biol. 50 (1988) 329–344.

DOI: 10.1016/s0092-8240(88)90001-8

Google Scholar

[37] N.C. Das, A Study of Optimum Load-Bearing Capacity for Slider Bearing Lubricated With Couple Stress Fluids in Magnetic Field, Tribology International 31 (1998) 393-400.

DOI: 10.1016/s0301-679x(98)00050-4

Google Scholar

[38] Sunil, R.C. Sharma and R.S. Chandel, (2002). On superposed couple-stress fluids in porous medium in hydromagnetics. Zeitschrift f¨ur Naturforschung 57a 955–960.

DOI: 10.1515/zna-2002-1208

Google Scholar

[39] D. Tripathi, A. Yadav and A.O. Bég, Electro‐osmotic flow of couple stress fluids in a micro‐channel propagated by peristalsis. Eur Phys J Plus. 132 (2017)173‐185.

DOI: 10.1140/epjp/i2017-11416-x

Google Scholar

[40] U.S. Mahabaleshwar, I.E. Sarris, A.A. Hill, G. Lorenzini and I. Pop, An MHD couple stress fluid due to a perforated sheet undergoing linear stretching with heat transfer. Int J Heat MassTransfer. 105 (2017) 157‐167.

DOI: 10.1016/j.ijheatmasstransfer.2016.09.040

Google Scholar

[41] S.O. Adesanya, R.S. Lebelo, and K.C. Moloi, Evaluation of Heat Irreversibility in a Thin Film Flow of Couple Stress Fluid on a Moving Belt, Advances in Mathematical Physics 2018 https://doi.org/10.1155/2018/6237592.

DOI: 10.1155/2018/6237592

Google Scholar

[42] S.O. Adesanya, C.R. Makhalemele, L. Rundora, Natural convection flow of heat generating hydromagnetic couple stress fluid with time periodic boundary conditions, Alexandria Eng. J. (2017) http://dx.doi.org/10.1016/j.aej.2017.04.006.

DOI: 10.1016/j.aej.2017.04.006

Google Scholar

[43] S.O. Adesanya, A.S. Onanaye, O.G. Adeyemi, M. Rahimi-Gorji, I.M. Alarifi, Evaluation ofheat irreversibility in couple stress falling liquid films along heated inclined substrate, Journal of Cleaner Production (2019).

DOI: 10.1016/j.jclepro.2019.117608

Google Scholar

[44] J.A. Gbadeyana, A.A. Opanuga, Inherent irreversibility analysis in a buoyancy induced magnetohydrodynamic couple stress fluid, Journal of Mathematics and Computer Science, 18 (2018) 411–422.

DOI: 10.22436/jmcs.018.04.03

Google Scholar

[45] Z. Shah, P. Kumam, A. Dawar, E.O. Alzahrani and P. Thounthong, Study of the Couple Stress Convective Micropolar Fluid Flow in a Hall MHD Generator System, Front. Phys., 2019 https://doi.org/10.3389/fphy.2019.00171.

DOI: 10.3389/fphy.2019.00171

Google Scholar

[46] M. Kumar, G.J. Reddy, N.N. Kumar, O.A. Bég, Application of differential transform method to unsteady free convective heat transfer of a couple stress fluid over a stretching sheet, Heat Transfer-Asian Research (2018) 1-19. https://doi.org/10.1002/htj.21396.

DOI: 10.1002/htj.21396

Google Scholar

[47] A. Ishak, R. Nazar, Ioan Pop, Boundary layer flow and heat transfer over an unsteady stretching vertical surface, Meccanica, 44 (2009) 369–375. DOI 10.1007/s11012-008-9176-9.

DOI: 10.1007/s11012-008-9176-9

Google Scholar

[48] K.A. Yih, Free convection on MHD coupled heat and mass transfer of a moving permeable vertical surface, Int. Comm. Heat Mass Transfer 26(1) (1999) 95-104.

DOI: 10.1016/s0735-1933(98)00125-0

Google Scholar