Structural Evolution of Single-Walled Carbon Nanotubes: Molecular Dynamics Simulation

Article Preview

Abstract:

We investigate the structural evolution of the single-walled carbon nanotubes (SWNTs) by molecular dynamics (MD) simulation using the Gao-Weber potential. The structural evolution of SWNTs is analyzed through the total energy per atom, the radial distribution function, coordination number, bond angle and the distribution of ring statistics. The results show that the melting temperature of SWNTs occurs at around Tm=5620 K. This value is in good agreement with the result of Zhang and co-workers. The visualization indicates that the initially perfect SWNTs is broken resulting in the ring of various.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-146

Citation:

Online since:

October 2022

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Iijima, S, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] Dresselhaus, G., Dresselhaus, M. S., & Saito, R, Physical properties of carbon nanotubes, World scientific (19998).

Google Scholar

[3] Huang, J. Y., Chen, S., Wang, Z. Q., Kempa, K., Wang, Y. M., Jo, S. H., ... & Ren, Z. F, Superplastic carbon nanotubes, Nature, 439 (2006) 281-281.

DOI: 10.1038/439281a

Google Scholar

[4] Togaya, M, Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon, Physical review letters, 79 (1997) 2474.

DOI: 10.1103/physrevlett.79.2474

Google Scholar

[5] Zhang, K., Stocks, G. M., & Zhong, J, Melting and premelting of carbon nanotubes, Nanotechnology, 18 (2007) 285703.

DOI: 10.1088/0957-4484/18/28/285703

Google Scholar

[6] Kowaki, Y., Harada, A., Shimojo, F., & Hoshino, K, Radius dependence of the melting temperature of single-walled carbon nanotubes: molecular-dynamics simulations, Journal of Physics: Condensed Matter, 19 (2007) 436224.

DOI: 10.1088/0953-8984/19/43/436224

Google Scholar

[7] Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P. J., & Yodh, A. G, Premelting at defects within bulk colloidal crystals, Science, 309 (2005) 1207-1210.

DOI: 10.1126/science.1112399

Google Scholar

[8] Sinha, S. K., Kumar, D., & Patnaik, A. An investigation on thermal stability of single wall carbon nanotubes (SWCNTs) by molecular dynamics simulations. Materials Today: Proceedings, 44 (2021) 4940-4944.

DOI: 10.1016/j.matpr.2020.11.1026

Google Scholar

[9] Gao, F., & Weber, W. J, Empirical potential approach for defect properties in 3C-SiC, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 191 (2002) 504-508.

DOI: 10.1016/s0168-583x(02)00600-6

Google Scholar

[10] Tersoff, J, Energies of fullerenes. Physical Review B, 46 (1992) 15546.

Google Scholar

[11] Plimpton, S, Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics, 117 (1995) 1-19.

DOI: 10.1006/jcph.1995.1039

Google Scholar

[12] Le Roux, S., & Petkov, V, ISAACS–interactive structure analysis of amorphous and crystalline systems, Journal of Applied Crystallography, 43 (2010) 181-185.

DOI: 10.1107/s0021889809051929

Google Scholar

[13] Humphrey, W., Dalke, A., & Schulten, K, VMD: visual molecular dynamics, Journal of molecular graphics, 14 (1996) 33-38.

DOI: 10.1016/0263-7855(96)00018-5

Google Scholar

[14] Hoang, V. V., Cam Tuyen, L. T., & Dong, T. Q, Stages of melting of graphene model in two-dimensional space, Philosophical Magazine, 96 (2016) 1993-2008.

DOI: 10.1080/14786435.2016.1185183

Google Scholar

[15] Los, J. H., Zakharchenko, K. V., Katsnelson, M. I., & Fasolino, A, Melting temperature of graphene, Physical Review B, 91 (2015) 045415.

DOI: 10.1103/physrevb.91.045415

Google Scholar