High Temperature Stability of K-Pb Liquid Alloy

Article Preview

Abstract:

The study explores the thermo-physical properties of complex binary liquid potassium-lead alloy at temperature 848 K as a function of concentration by considering complex using different model equations. The Quasi Chemical approximation and the R-K equation are used to investigate features such as free energy, heat of mixing, chemical activity, and concentration fluctuation in the long wave limit at temperature of 848 K. However, at 900 K and 1000 K, these are exclusively examined using the R-K equation. The temperature dependent exponential interaction parameters proposed by Kaptay are taken into account in the RK equation. The study goes on to look at the alloy's viscosity and surface tension using the Budai-Benko-Kaptay model and the Kaptay's improved derivation of Butler equation. The mixing nature of the system is investigated in depth, with a focus on the interaction energy parameters between the alloy's surrounding atoms. The work investigates the fact that the liquid alloy has a moderately interacting as well as ordering character throughout a whole concentration range, and the computed theoretical thermodynamic facts are in reasonable agreement with the corresponding experimental data at 848 K. At greater temperatures, the alloy's tendency goes from ordering to segregating. The alloy's viscosity and surface tension decrease as the temperature rises.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-154

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Predel, Thermodynamic properties and structure of liquid alloys, Berichte der Bunsengesellschaft für physikalische Chemie.80 (8) (1976) 695-704.

DOI: 10.1002/bbpc.19760800805

Google Scholar

[2] I.B. Bhandari, N. Panthi, I. Koirala and D. Adhikari, Phase segregating and complex forming Pb-based (= X-Pb) liquid alloys, Phase Transit. 1 (2021) 338-352.

DOI: 10.1080/01411594.2021.1933485

Google Scholar

[3] D. Adhikari, B.P. Singh and I.S. Jha, Phase separation in Na–K liquid alloy, Phase Transit.. 85(8), (2012) 675-680.

DOI: 10.1080/01411594.2011.635903

Google Scholar

[4] N. Panthi, I.B. Bhandari and I. Koirala, Theoretical assessment on hetero-coordination of Alloys Silver-Antimony at Molten State, Himalayan Journal of Science and Technology, 3-4 (2020) 68-73.

DOI: 10.3126/hijost.v4i0.33871

Google Scholar

[5] P.J. Flory, Thermodynamics of high polymer solutions, J. Chem. Phys. 10(1) (1942) 51-61.

Google Scholar

[6] O. Redlich and A.T. Kister. Algebraic representation of thermodynamic properties and the classification of solutions, Ind Eng Chem .40(2) (1948) 345-348.

DOI: 10.1021/ie50458a036

Google Scholar

[7] A.B. Bhatia and N.H. March. Size effects, peaks in concentration fluctuations and liquidus curves of Na-Cs, J. Phys. F: Met. Phys. 5(6) (1975) 1100-1106.

DOI: 10.1088/0305-4608/5/6/011

Google Scholar

[8] A.B. Bhatia and R.N. Singh. Thermodynamic properties of compound forming molten alloys in a weak interaction approximation, Phys Chem Liquids.11 (1982) 343-353.

DOI: 10.1080/00319108208080755

Google Scholar

[9] A.B. Bhatia and R.N. Singh. A quasi-lattice theory for compound forming molten alloys. Phys Chem Liquids, 13 (3) (1984) 177-190.

DOI: 10.1080/00319108408080778

Google Scholar

[10] R.N. Singh and I.K. Mishra. Conditional probabilities and thermodynamics of binary molten alloys, Phys Chem Liquids.18 (4) (1988)303-319.

DOI: 10.1080/00319108808078606

Google Scholar

[11] R. Novakovic. Thermodynamics, surface properties and microscopic functions of liquid Al–Nb and Nb–Ti alloys. Journal of Non-Crystalline Solids. 31-32 (2010) 1593-1598.

DOI: 10.1016/j.jnoncrysol.2010.05.055

Google Scholar

[12] R. Novakovic, T. Tanaka, M.L. Muolo, J. Lee and A. Passerone. Bulk and surface properties of liquid Ag–X (X= Ti, Hf) compound forming alloys, Surf. Sci.1-3 (2005)56-59.

DOI: 10.1016/j.susc.2005.06.022

Google Scholar

[13] Panthi, N., Bhandari, I. B. & Koirala, I.Thermophysical behavior of mercury-lead liquid alloy, Papers in Physics.14(2022)14005.

DOI: 10.4279/pip.140005

Google Scholar

[14] I. Budai, M.Z. Benkő and G. Kaptay. Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys, In Materials science forum. 537 (2007) 489-496.

DOI: 10.4028/www.scientific.net/msf.537-538.489

Google Scholar

[15] G.Kaptay.Improved derivation of the Butler equations for surface tension of solutions, Langmuir. 35(33) (2019)10987-10992.

DOI: 10.1021/acs.langmuir.9b01892

Google Scholar

[16] S.L. Chen, S.S. Daniel, F. Zhang, Y.A. Chang, W.A. Oates and R. Schmid-Fetzer. On the calculation of multicomponent stable phase diagrams, J. Ph. Equilibria Diffus. 22 (4) (2001) 373-378.

DOI: 10.1361/105497101770332910

Google Scholar

[17] R.K. Gohivar, S. K., Yadav, R.P. Koirala and D. Adhikari. Assessment of thermo-structural properties of Al-Fe and Fe-Si alloys at high temperatures, Phys Chem Liquids. 1 (2020) 679-689.

DOI: 10.1080/00319104.2020.1793985

Google Scholar

[18] N. Panthi, I.B. Bhandari, R.K. Rai, and I. Koirala. Thermophysical Behavior of Sodium Lead Alloy at Different Temperature, Adv. Stud. Theor. Phys. 15 (4) (2021) 153-165.

DOI: 10.12988/astp.2021.91548

Google Scholar

[19] G. Kaptay. A new equation for the temperature dependence of the excess Gibbs energy of solution phases, Calphad. 28(2) (2004) 115-124.

DOI: 10.1016/j.calphad.2004.08.005

Google Scholar

[20] G.Kaptay. The exponential excess Gibbs energy model revisited. Calphad.56 (2017)169-184.

DOI: 10.1016/j.calphad.2017.01.002

Google Scholar

[21] Q. Zhang, J. Mao, W.K. Pang, T. Zheng, V. Sencadas, Y. Chen and Z. Guo. Boosting the potassium storage performance of alloy‐based anode materials via electrolyte salt chemistry, Adv. Energy Mater. 8(15) (2018) 1703288.

DOI: 10.1002/aenm.201703288

Google Scholar

[22] A.B. Bhatia and D.E. Thornton. Structural aspects of the electrical resistivity of binary alloys, Phys. Rev. B. 2(8) (1970) 3004-3012.

DOI: 10.1103/physrevb.2.3004

Google Scholar

[23] G. Kaptay. A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals, Mater. Sci. Eng. A. 495(1-2) (2008) 19-26.

DOI: 10.1016/j.msea.2007.10.112

Google Scholar

[24] E.A. Brandes and G.B. Brook (Eds.). Smithells metals reference book, Elsevier, (2013).

Google Scholar

[25] R.Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser and K.K. Kelley. Selected values of the thermodynamic properties of binary alloys, National Standard Reference Data System, Ohio, (1973).

Google Scholar

[26] I.S. Jha, R. Khadka, R.P. Koirala, B. P.Singh, and D. Adhikari. Theoretical assessment on mixing properties of liquid Tl–Na alloys, Philos. Mag. 96(16) (2016) 1664-1683.

DOI: 10.1080/14786435.2016.1177668

Google Scholar

[27] G. Kaptay. A coherent set of model equations for various surface and interface energies in systems with liquid and solid metals and alloys, Adv. Colloid Interface Sci.283 (2020) 102212.

DOI: 10.1016/j.cis.2020.102212

Google Scholar