[1]
Z. Wu, J. Wu, T. Peng, Y. Li, D. Lin, B. Xing, C. Li, Y. Yang, L. Yang, L. Zhang, R. Ma, W. Wu, X. Lv, J. Dai, G. Han, Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films, Polymers 9(3) (2017) 1–19.
DOI: 10.3390/polym9030102
Google Scholar
[2]
B.I. Turko, V.B. Kapustianyk, V. P. Rudyk, Y. V. Rudyk, Thermal conductivity of zinc oxide micro-and nanocomposites, J. Nano- Electron. Phys. 8(2) (2016) 1–4.
Google Scholar
[3]
M. AC, R. B, Effect of Zinc Oxide Nanoparticles on Mechanical Properties of Diglycidyl Ether of Bisphenol-A, J. Mater. Sci. Technol. 05(06) (2016).
DOI: 10.4172/2169-0022.1000291
Google Scholar
[4]
F. A. Lothfy, M. F. Haron, H. A. Rafaie, Fabrication and Characterization of Jackfruit Seed Powder and Polyvinyl Alcohol Blend as Biodegradable Plastic, J. Polym. Sci. Technol. 3(2) (2018) 1–5.
Google Scholar
[5]
C. W. Liew, S. Ramesh, Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes, Carbohydr. Polym. 124 (2015) 222–228.
DOI: 10.1016/j.carbpol.2015.02.024
Google Scholar
[6]
R. A. S. N. Ranasinghe, S. D. T. Maduwanthi, R. A. U. J. Marapana, Nutritional and Health Benefits of Jackfruit (Artocarpus heterophyllus Lam.): A Review, Int. J. Food Sci. (2019).
DOI: 10.1155/2019/4327183
Google Scholar
[7]
S. B. Swami, N. J. Thakor, P. M. Haldankar, , S. B. Kalse, Jackfruit and Its Many Functional Components as Related to Human Health: A Review, Compr. Rev. Food Sci. Food Saf. 11(6) (2012) 565–576.
DOI: 10.1111/j.1541-4337.2012.00210.x
Google Scholar
[8]
V. Tulyathan, K. Tananuwong, P. Songjinda, N. Jaiboon, Some Physicochemical Properties of Jackfruit (Artocarpus heterophyllus Lam) Seed Flour and Starch, Sci. Asia 28 (2002) 37–41.
DOI: 10.2306/scienceasia1513-1874.2002.28.037
Google Scholar
[9]
T. Theivasanthi, M. Alagar, An Insight Analysis of Nano sized Powder of Jackfruit Seed, Nano Biomed. Eng. 3(3) (2013) 2–3.
DOI: 10.5101/nbe.v3i3.p163-168
Google Scholar
[10]
M.G. Saha, M. N. Islam, M. Molla, Determination of Harvest Maturity of Jackfruit, Bangladesh Hort. 2(1) (2016) 23–26.
Google Scholar
[11]
A. Sultana, Determination of Proximate Composition and Amino Acid Profile of Jackfruit Seed and Utilization of Its Seed Flour for Development of Protein Enriched Supplementary Food, J. Cell Biol. 5(6) (2017) 57.
DOI: 10.11648/j.cb.20170506.11
Google Scholar
[12]
Jayus, D. Setiawan, Giyarto, Physical and Chemical Characteristics of Jackfruit (Artocarpus Heterophyllus Lamk.) Seeds Flour Produced Under Fermentation Process by Lactobacillus Plantarum, Agric. Sci. Procedia 9 (2016) 342–347.
DOI: 10.1016/j.aaspro.2016.02.148
Google Scholar
[13]
S.N. Kane, A. Mishra, A.K. Dutta, Preface: International Conference on Recent Trends in Physics (ICRTP 2016), J. Phys. Conf. Ser. 755(1) (2016) 6.
Google Scholar
[14]
T. S. Gaaz, A. B. Sulong, M. N. Akhtar, A. A. H. Kadhum, A. B. Mohamad, A. A. Al-Amiery, D. J. McPhee, Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites, Molecules 20(12) (2015) 22833–22847.
DOI: 10.3390/molecules201219884
Google Scholar
[15]
D. Ananthajothi, Thermal and Structural Studies of Plasticized Biopolymer Electrolytes Based On Potato Starch: NH4Cl, Int. J. Res. Appl. Sci. Eng. Technol. 6(3) (2018) 847–851.
DOI: 10.22214/ijraset.2018.3134
Google Scholar
[16]
M. A. A. Rahman, S. Mahmud, A. Karim Alias, A. F. M. Nor, Effect of nanorod zinc oxide on electrical and optical properties of starch-based polymer nanocomposites, J. Phys. Sci. 24(1) (2013) 17–28.
Google Scholar
[17]
L. So, Conductivity Studies of Biopolymer Electrolyte Based on Potato Starch / Chitosan Blend Doped With, J. Teknol. 7 (2015) 1–5.
Google Scholar
[18]
Information on http://studentsrepo.um.edu.my/2497/4/BAB_1.pdf.
Google Scholar
[19]
S. H. Rashmi, A. Raizada, G. M. Madhu, A. A. Kittur, R. Suresh, H. K. Sudhina, Influence of zinc oxide nanoparticles on structural and electrical properties of polyvinyl alcohol films, Plast. Rubber Compos. 44(1) (2015) 33–39.
DOI: 10.1179/1743289814y.0000000115
Google Scholar
[20]
S. B. Aziz, T.J. Woo, M. F. Z. Kadir, H. M. Ahmed, A conceptual review on polymer electrolytes and ion transport models, J. Sci. Adv. Mater. Devices 3(1) (2018) 1–17.
DOI: 10.1016/j.jsamd.2018.01.002
Google Scholar
[21]
J. Gurusiddappa, W. Madhuri, R. Padma Suvarna, K. Priya Dasan, Studies on the morphology and conductivity of PEO/LiClO4, Mater. Today: Proc. 3(6) (2016) 1451–1459.
DOI: 10.1016/j.matpr.2016.04.028
Google Scholar
[22]
A. Arya, A. L. Sharma, Structural, electrical properties and dielectric relaxations in Na+ ion conducting solid polymer electrolyte, J. Phys.: Condens. Matter (2018) 1– 57.
DOI: 10.1088/1361-648x/aab466
Google Scholar
[23]
Y. Badali, S. Altındal, I. Uslu, Dielectric properties, electrical modulus and current transport mechanisms of Au/ZnO/n-Si structures, Prog. Nat. Sci. 28(3) (2018) 325–331.
DOI: 10.1016/j.pnsc.2018.05.003
Google Scholar
[24]
N. Tripathi, A. Shukla, A. K. Thakur, D. T. Marx, Dielectric Modulus and Conductivity Scaling Approach to the Analysis of Ion Transport in Solid Polymer Electrolytes, Polym. Eng. Sci. 60(2) (2020) 297–305.
DOI: 10.1002/pen.25283
Google Scholar
[25]
V.S. Kumaran, H.M. Ng, S. Ramesh, K. Ramesh, B. Vengadaesvaran, A. Numan, The conductivity and dielectric studies of solid polymer electrolytes based on poly ( acrylamide-co-acrylic acid) doped with sodium iodide, (2018).
DOI: 10.1007/s11581-018-2448-z
Google Scholar