Electrical Properties of Jackfruit Seed Starch and Polyvinyl Alcohol Blend with Different Composition of Zinc Oxide

Article Preview

Abstract:

A biopolymer electrolyte made from natural polymer consists of jackfruit seed starch (JSS) and polyvinyl alcohol (PVA) with a different composition of zinc oxide (ZnO) was prepared using the solution casting method. The incorporation of metal oxides such as ZnO into natural polymers can improve the electrical properties, which can produce biodegradable energy storage devices. This innovation may aid in the reduction of the use of electronic devices, which generate e-waste. Thus, this study was conducted to investigate the effect of ZnO addition to the biopolymer in terms of its electrical properties. The samples were prepared by using the solution casting method. Different percentages of ZnO were mixed with JSS, PVA, hydrocloric acid, sodium hydroxide, and glycerol before being moulded in a petri dish and dried at room temperature. The electrical properties of the blends were then characterized by using an Agilent 4284a Precision LCR meter. The highest ionic conductivity value for JSS and PVA after the addition of ZnO is 1.10x10-6 Scm-1 with 10% of ZnO, and the lowest conductivity is 2.11x10-7 Scm-1 with 14% of ZnO. The dielectric and electric modulus were further studied in order to understand the electrode polarization effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-141

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Wu, J. Wu, T. Peng, Y. Li, D. Lin, B. Xing, C. Li, Y. Yang, L. Yang, L. Zhang, R. Ma, W. Wu, X. Lv, J. Dai, G. Han, Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films, Polymers 9(3) (2017) 1–19.

DOI: 10.3390/polym9030102

Google Scholar

[2] B.I. Turko, V.B. Kapustianyk, V. P. Rudyk, Y. V. Rudyk, Thermal conductivity of zinc oxide micro-and nanocomposites, J. Nano- Electron. Phys. 8(2) (2016) 1–4.

Google Scholar

[3] M. AC, R. B, Effect of Zinc Oxide Nanoparticles on Mechanical Properties of Diglycidyl Ether of Bisphenol-A, J. Mater. Sci. Technol. 05(06) (2016).

DOI: 10.4172/2169-0022.1000291

Google Scholar

[4] F. A. Lothfy, M. F. Haron, H. A. Rafaie, Fabrication and Characterization of Jackfruit Seed Powder and Polyvinyl Alcohol Blend as Biodegradable Plastic, J. Polym. Sci. Technol. 3(2) (2018) 1–5.

Google Scholar

[5] C. W. Liew, S. Ramesh, Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes, Carbohydr. Polym. 124 (2015) 222–228.

DOI: 10.1016/j.carbpol.2015.02.024

Google Scholar

[6] R. A. S. N. Ranasinghe, S. D. T. Maduwanthi, R. A. U. J. Marapana, Nutritional and Health Benefits of Jackfruit (Artocarpus heterophyllus Lam.): A Review, Int. J. Food Sci. (2019).

DOI: 10.1155/2019/4327183

Google Scholar

[7] S. B. Swami, N. J. Thakor, P. M. Haldankar, , S. B. Kalse, Jackfruit and Its Many Functional Components as Related to Human Health: A Review, Compr. Rev. Food Sci. Food Saf. 11(6) (2012) 565–576.

DOI: 10.1111/j.1541-4337.2012.00210.x

Google Scholar

[8] V. Tulyathan, K. Tananuwong, P. Songjinda, N. Jaiboon, Some Physicochemical Properties of Jackfruit (Artocarpus heterophyllus Lam) Seed Flour and Starch, Sci. Asia 28 (2002) 37–41.

DOI: 10.2306/scienceasia1513-1874.2002.28.037

Google Scholar

[9] T. Theivasanthi, M. Alagar, An Insight Analysis of Nano sized Powder of Jackfruit Seed, Nano Biomed. Eng. 3(3) (2013) 2–3.

DOI: 10.5101/nbe.v3i3.p163-168

Google Scholar

[10] M.G. Saha, M. N. Islam, M. Molla, Determination of Harvest Maturity of Jackfruit, Bangladesh Hort. 2(1) (2016) 23–26.

Google Scholar

[11] A. Sultana, Determination of Proximate Composition and Amino Acid Profile of Jackfruit Seed and Utilization of Its Seed Flour for Development of Protein Enriched Supplementary Food, J. Cell Biol. 5(6) (2017) 57.

DOI: 10.11648/j.cb.20170506.11

Google Scholar

[12] Jayus, D. Setiawan, Giyarto, Physical and Chemical Characteristics of Jackfruit (Artocarpus Heterophyllus Lamk.) Seeds Flour Produced Under Fermentation Process by Lactobacillus Plantarum, Agric. Sci. Procedia 9 (2016) 342–347.

DOI: 10.1016/j.aaspro.2016.02.148

Google Scholar

[13] S.N. Kane, A. Mishra, A.K. Dutta, Preface: International Conference on Recent Trends in Physics (ICRTP 2016), J. Phys. Conf. Ser. 755(1) (2016) 6.

Google Scholar

[14] T. S. Gaaz, A. B. Sulong, M. N. Akhtar, A. A. H. Kadhum, A. B. Mohamad, A. A. Al-Amiery, D. J. McPhee, Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites, Molecules 20(12) (2015) 22833–22847.

DOI: 10.3390/molecules201219884

Google Scholar

[15] D. Ananthajothi, Thermal and Structural Studies of Plasticized Biopolymer Electrolytes Based On Potato Starch: NH4Cl, Int. J. Res. Appl. Sci. Eng. Technol. 6(3) (2018) 847–851.

DOI: 10.22214/ijraset.2018.3134

Google Scholar

[16] M. A. A. Rahman, S. Mahmud, A. Karim Alias, A. F. M. Nor, Effect of nanorod zinc oxide on electrical and optical properties of starch-based polymer nanocomposites, J. Phys. Sci. 24(1) (2013) 17–28.

Google Scholar

[17] L. So, Conductivity Studies of Biopolymer Electrolyte Based on Potato Starch / Chitosan Blend Doped With, J. Teknol. 7 (2015) 1–5.

Google Scholar

[18] Information on http://studentsrepo.um.edu.my/2497/4/BAB_1.pdf.

Google Scholar

[19] S. H. Rashmi, A. Raizada, G. M. Madhu, A. A. Kittur, R. Suresh, H. K. Sudhina, Influence of zinc oxide nanoparticles on structural and electrical properties of polyvinyl alcohol films, Plast. Rubber Compos. 44(1) (2015) 33–39.

DOI: 10.1179/1743289814y.0000000115

Google Scholar

[20] S. B. Aziz, T.J. Woo, M. F. Z. Kadir, H. M. Ahmed, A conceptual review on polymer electrolytes and ion transport models, J. Sci. Adv. Mater. Devices 3(1) (2018) 1–17.

DOI: 10.1016/j.jsamd.2018.01.002

Google Scholar

[21] J. Gurusiddappa, W. Madhuri, R. Padma Suvarna, K. Priya Dasan, Studies on the morphology and conductivity of PEO/LiClO4, Mater. Today: Proc. 3(6) (2016) 1451–1459.

DOI: 10.1016/j.matpr.2016.04.028

Google Scholar

[22] A. Arya, A. L. Sharma, Structural, electrical properties and dielectric relaxations in Na+ ion conducting solid polymer electrolyte, J. Phys.: Condens. Matter (2018) 1– 57.

DOI: 10.1088/1361-648x/aab466

Google Scholar

[23] Y. Badali, S. Altındal, I. Uslu, Dielectric properties, electrical modulus and current transport mechanisms of Au/ZnO/n-Si structures, Prog. Nat. Sci. 28(3) (2018) 325–331.

DOI: 10.1016/j.pnsc.2018.05.003

Google Scholar

[24] N. Tripathi, A. Shukla, A. K. Thakur, D. T. Marx, Dielectric Modulus and Conductivity Scaling Approach to the Analysis of Ion Transport in Solid Polymer Electrolytes, Polym. Eng. Sci. 60(2) (2020) 297–305.

DOI: 10.1002/pen.25283

Google Scholar

[25] V.S. Kumaran, H.M. Ng, S. Ramesh, K. Ramesh, B. Vengadaesvaran, A. Numan, The conductivity and dielectric studies of solid polymer electrolytes based on poly ( acrylamide-co-acrylic acid) doped with sodium iodide, (2018).

DOI: 10.1007/s11581-018-2448-z

Google Scholar