A Review of Inhibit the Growth of Lithium Dendrite Strategies

Article Preview

Abstract:

Nowadays, the development of electronic technology has driven the development of battery industry. Under the rigid demand for energy storage materials, lithium metal has received a lot of attention due to its excellent energy storage performance, however, the growth of lithium dendrite makes it difficult to recycle. This review introduces the principle of lithium dendrite growth and its negative impact leading to the degradation of battery performance, and then focuses on the methods to inhibit lithium dendrite growth e.g., fabrication of alloyed structure, regulation of solid electrolyte interface (SEI), application of solid electrolyte and recent research progress e.g., nanodiamond additive method, single-atom zinc anion skeleton method, battery self-heating method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-82

Citation:

Online since:

December 2022

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Palacín, M. R., & de Guibert, A. (2016). Why do batteries fail?. Science, 351(6273), 1253292.

DOI: 10.1126/science.1253292

Google Scholar

[2] Chen, Y., Jiang, Y., Chi, S. S., Woo, H. J., Yu, K., Ma, J., ... & Deng, Y. (2022). Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries. Journal of Power Sources, 521, 230921.

DOI: 10.1016/j.jpowsour.2021.230921

Google Scholar

[3] Xu, X., Wang, S., Wang, H., Xu, B., Hu, C., Jin, Y., ... & Yan, H. (2017). The suppression of lithium dendrite growth in lithium sulfur batteries: A review. Journal of Energy Storage, 13, 387-400.

DOI: 10.1016/j.est.2017.07.031

Google Scholar

[4] Han, N., Chen, D., Pang, Y., Han, Z., Xia, Y., & Jiao, X. (2017). Structural regulation of ZnGa2O4 nanocubes for achieving high capacity and stable rate capability as an anode material of lithium ion batteries. Electrochimica Acta, 235, 295-303.

DOI: 10.1016/j.electacta.2017.03.122

Google Scholar

[5] Zhang, H., Li, C., Eshetu, G. G., Laruelle, S., Grugeon, S., Zaghib, K., ... & Forsyth, M. (2020). From solid‐solution electrodes and the rocking‐chair concept to today's batteries. Angewandte Chemie, 132(2), 542-546.

DOI: 10.1002/ange.201913923

Google Scholar

[6] Zhang, X., Wang, A., Liu, X., & Luo, J. (2019). Dendrites in lithium metal anodes: suppression, regulation, and elimination. Accounts of Chemical Research, 52(11), 3223-3232.

DOI: 10.1021/acs.accounts.9b00437

Google Scholar

[7] Rajagopalan, R., Tang, Y., Ji, X., Jia, C., & Wang, H. (2020). Advancements and challenges in potassium ion batteries: a comprehensive review. Advanced Functional Materials, 30(12), 1909486.

DOI: 10.1002/adfm.201909486

Google Scholar

[8] Zhamu, A., Chen, G., Liu, C., Neff, D., Fang, Q., Yu, Z., ... & Jang, B. Z. (2012). Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy & Environmental Science, 5(2), 5701-5707.

DOI: 10.1039/c2ee02911a

Google Scholar

[9] Zhang, R., Li, N. W., Cheng, X. B., Yin, Y. X., Zhang, Q., & Guo, Y. G. (2017). Advanced micro/nanostructures for lithium metal anodes. Advanced Science, 4(3), 1600445.

DOI: 10.1002/advs.201600445

Google Scholar

[10] Tikekar, M. D., Choudhury, S., Tu, Z., & Archer, L. A. (2016). Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy, 1(9), 1-7.

DOI: 10.1038/nenergy.2016.114

Google Scholar

[11] Zhang, K., Lee, G. H., Park, M., Li, W., & Kang, Y. M. (2016). Recent developments of the lithium metal anode for rechargeable non‐aqueous batteries. Advanced Energy Materials, 6(20), 1600811.

DOI: 10.1002/aenm.201600811

Google Scholar

[12] Xu, K. (2014). Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews, 114(23), 11503-11618.

DOI: 10.1021/cr500003w

Google Scholar

[13] Zhang, X. Q., Chen, X., Xu, R., Cheng, X. B., Peng, H. J., Zhang, R., ... & Zhang, Q. (2017). Columnar lithium metal anodes. Angewandte Chemie, 129(45), 14395-14399.

DOI: 10.1002/ange.201707093

Google Scholar

[14] Liu, X. H., Zhong, L., Zhang, L. Q., Kushima, A., Mao, S. X., Li, J., ... & Huang, J. Y. (2011). Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Applied Physics Letters, 98(18), 183107.

DOI: 10.1063/1.3585655

Google Scholar

[15] Stark, J. K., Ding, Y., & Kohl, P. A. (2013). Nucleation of electrodeposited lithium metal: dendritic growth and the effect of co-deposited sodium. Journal of The Electrochemical Society, 160(9), D337.

DOI: 10.1149/2.028309jes

Google Scholar

[16] Kim, H., Jeong, G., Kim, Y. U., Kim, J. H., Park, C. M., & Sohn, H. J. (2013). Metallic anodes for next generation secondary batteries. Chemical Society Reviews, 42(23), 9011-9034.

DOI: 10.1039/c3cs60177c

Google Scholar

[17] Peled, E., Golodnitsky, D., & Ardel, G. (1997). Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. Journal of the Electrochemical Society, 144(8), L208.

DOI: 10.1149/1.1837858

Google Scholar

[18] Xu, M., Xing, L., & Li, W. (2014). Interphases between electrolytes and anodes in Li-ion battery. In Electrolytes for Lithium and Lithium-Ion Batteries (pp.227-282). Springer, New York, NY.

DOI: 10.1007/978-1-4939-0302-3_5

Google Scholar

[19] Monroe, C., & Newman, J. (2003). Dendrite growth in lithium/polymer systems: A propagation model for liquid electrolytes under galvanostatic conditions. Journal of The Electrochemical Society, 150(10), A1377.

DOI: 10.1149/1.1606686

Google Scholar

[20] Wood, K. N., Kazyak, E., Chadwick, A. F., Chen, K. H., Zhang, J. G., Thornton, K., & Dasgupta, N. P. (2016). Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS central science, 2(11), 790-801.

DOI: 10.1021/acscentsci.6b00260

Google Scholar

[21] Kim, H., Jeong, G., Kim, Y. U., Kim, J. H., Park, C. M., & Sohn, H. J. (2013). Metallic anodes for next generation secondary batteries. Chemical Society Reviews, 42(23), 9011-9034.

DOI: 10.1039/c3cs60177c

Google Scholar

[22] Aurbach, D., Zinigrad, E., Cohen, Y., & Teller, H. (2002). A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid state ionics, 148(3-4), 405-416.

DOI: 10.1016/s0167-2738(02)00080-2

Google Scholar

[23] Dornbusch, D. A., Hilton, R., Lohman, S. D., & Suppes, G. J. (2014). Experimental validation of the elimination of dendrite short-circuit failure in secondary lithium-metal convection cell batteries. Journal of The Electrochemical Society, 162(3), A262.

DOI: 10.1149/2.0021503jes

Google Scholar

[24] Cheng, X. B., Zhang, R., Zhao, C. Z., & Zhang, Q. (2017). Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews, 117(15), 10403-10473.

DOI: 10.1021/acs.chemrev.7b00115

Google Scholar

[25] Lu, D., Shao, Y., Lozano, T., Bennett, W. D., Graff, G. L., Polzin, B., ... & Xiao, J. (2015). Failure mechanism for fast‐charged lithium metal batteries with liquid electrolytes. Advanced Energy Materials, 5(3), 1400993.

DOI: 10.1002/aenm.201400993

Google Scholar

[26] Cheng, X. B., Hou, T. Z., Zhang, R., Peng, H. J., Zhao, C. Z., Huang, J. Q., & Zhang, Q. (2016). Dendrite‐free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Advanced materials, 28(15), 2888-2895.

DOI: 10.1002/adma.201506124

Google Scholar

[27] Peled, E. (1979). The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of The Electrochemical Society, 126(12), (2047).

DOI: 10.1149/1.2128859

Google Scholar

[28] Ding, F., Xu, W., Graff, G. L., Zhang, J., Sushko, M. L., Chen, X., ... & Zhang, J. G. (2013). Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. Journal of the American Chemical Society, 135(11), 4450-4456.

DOI: 10.1021/ja312241y

Google Scholar

[29] Liu, W., Lee, S. W., Lin, D., Shi, F., Wang, S., Sendek, A. D., & Cui, Y. (2017). Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nature energy, 2(5), 1-7.

DOI: 10.1038/nenergy.2017.35

Google Scholar

[30] Han, X., Gong, Y., Fu, K. K., He, X., Hitz, G. T., Dai, J., ... & Hu, L. (2017). Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature materials, 16(5), 572-579.

DOI: 10.1038/nmat4821

Google Scholar

[31] Takehara, Z. I. (1997). Future prospects of the lithium metal anode. Journal of power sources, 68(1), 82-86.

DOI: 10.1016/s0378-7753(96)02546-3

Google Scholar

[32] Wen, J., Yu, Y., & Chen, C. (2012). A review on lithium-ion batteries safety issues: existing problems and possible solutions. Materials express, 2(3), 197-212.

DOI: 10.1166/mex.2012.1075

Google Scholar

[33] Li, Z., Huang, J., Liaw, B. Y., Metzler, V., & Zhang, J. (2014). A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of power sources, 254, 168-182.

DOI: 10.1016/j.jpowsour.2013.12.099

Google Scholar

[34] Ma, Q., Cui, J., Luo, J., & Dong, A. (2022). Nonreactive Electrolyte Additives for Stable Lithium Metal Anodes. ACS Applied Energy Materials.

DOI: 10.1021/acsaem.1c03333

Google Scholar

[35] Cheng, X. B., Zhao, M. Q., Chen, C., Pentecost, A., Maleski, K., Mathis, T., ... & Gogotsi, Y. (2017). Nanodiamonds suppress the growth of lithium dendrites. Nature communications, 8(1), 1-9.

DOI: 10.1038/s41467-017-00519-2

Google Scholar

[36] Nie, H., Zhang, C., Liu, Y., & He, A. (2016). Synthesis of Janus rubber hybrid particles and interfacial behavior. Macromolecules, 49(6), 2238-2244.

DOI: 10.1021/acs.macromol.6b00159

Google Scholar

[37] Luo, K., Leng, Z., Li, Z., Ma, M., Li, S., Xie, W., ... & Peng, Z. (2021). Shielded electric field-boosted lithiophilic Sites: A Janus interface toward stable lithium metal anodes. Chemical Engineering Journal, 416, 129142.

DOI: 10.1016/j.cej.2021.129142

Google Scholar

[38] Zhong, Y., Lin, F., Wang, M., Zhang, Y., Ma, Q., Lin, J., ... & Wang, H. (2020). Metal organic framework derivative improving lithium metal anode cycling. Advanced Functional Materials, 30(10), 1907579.

DOI: 10.1002/adfm.201907579

Google Scholar

[39] Song, C. L., Li, Z. H., Ma, L. Y., Li, M. Z., Huang, S., Hong, X. J., ... & Lan, Y. Q. (2021). Single-Atom Zinc and Anionic Framework as Janus Separator Coatings for Efficient Inhibition of Lithium Dendrites and Shuttle Effect. ACS nano, 15(8), 13436-13443.

DOI: 10.1021/acsnano.1c03876

Google Scholar

[40] Vishnugopi, B. S., Hao, F., Verma, A., & Mukherjee, P. P. (2020). Double-edged effect of temperature on lithium dendrites. ACS Applied Materials & Interfaces, 12(21), 23931-23938.

DOI: 10.1021/acsami.0c04355

Google Scholar

[41] Hong, Z., & Viswanathan, V. (2019). Prospect of thermal shock induced healing of lithium dendrite. ACS Energy Letters, 4(5), 1012-1019.

DOI: 10.1021/acsenergylett.9b00433

Google Scholar