[1]
H. Huang, J. Lai, J. Lu, Z. Li, Pulsed laser ablation of bulk target and particle products in liquid for nanomaterial fabrication, AIP Advances. 9,1 (2019) 015307.
DOI: 10.1063/1.5082695
Google Scholar
[2]
V.L. Chiang, S.F. Danish, R.E. Gross, Laser Interstitial Thermal Therapy in Neurosurgery, Springer International Publishing, (2020).
Google Scholar
[3]
A.M. Mostafa, S.A. Yousef, W.H. Eisa, M.A. Ewaida, E.A. Al-Ashkar, Au@CdO core/shell nanoparticles synthesized by pulsed laser ablation in Au precursor solution, Applied Physics A. 123,12 (2017) 1-9.
DOI: 10.1007/s00339-017-1354-y
Google Scholar
[4]
B.A. Camacho-Flores, O. Martínez-Álvarez, M.C. Arenas-Arrocena, R. Garcia-Contreras, L. Argueta-Figueroa, J. Fuente-Hernández, L.S. Acosta-Torres, Copper: synthesis techniques in nanoscale and powerful application as an antimicrobial agent, Journal of Nanomaterials. 2015 (2015) ID 415238, 10 pages.
DOI: 10.1155/2015/415238
Google Scholar
[5]
A.K. Abdulrahman, One-step synthesis of copper oxide nanoparticles using pulsed laser ablation in water: influence of the laser wavelengths on optical properties, Eng. & Tech. Journal. 31,7 (2013) 894.
Google Scholar
[6]
R.H.M. Dikhell, A Study of Some Physical Properties of Laser Energies For CuO and CdO Nano Particles and their Antibacterial Effect, PhD dissertation, College of Education for Pure Sciences, University of Tikrit, (2018).
Google Scholar
[7]
H. Khalid, S. Shamaila, N. Zafar, R. Sharif, J. Nazir, M. Rafique, S. Ghani, H. Saba, Antibacterial behavior of laser-ablated copper nanoparticles, Acta Metallurgica Sinica (English Letters), 29,8 (2016) 748-754.
DOI: 10.1007/s40195-016-0450-x
Google Scholar
[8]
A.T. Joseph, A. Treeza, P. Prakash, S.S. Narvi, Phytofabrication and Characterization of copper nanoparticles using Allium sativum and its antibacterial activity, Int. J. Sci. Eng. Technol. 4 (2016) 463-472.
Google Scholar
[9]
M. Fernández-Arias, M. Boutinguiza, J. del Val, A. Riveiro, D. Rodríguez, F. Arias-González, Javier Gil, Juan Pou, Fabrication and deposition of copper and copper oxide nanoparticles by laser ablation in open air, Nanomaterials. 10,2 (2020) 300.
DOI: 10.3390/nano10020300
Google Scholar
[10]
K.S. Khashan, G.M. Sulaiman, F.A. Abdulameer, S. Albukhaty, M.A. Ibrahem, T. Al-Muhimeed, A.A. AlObaid, Antibacterial activity of TiO2 nanoparticles prepared by one-step laser ablation in liquid, Applied Sciences. 11,10 (2021) 4623.
DOI: 10.3390/app11104623
Google Scholar
[11]
V. Scardaci, M. Condorelli, M. Barcellona, L. Salemi, M. Pulvirenti, M.E. Fragalà, G. Compagnini, Fast One-Step Synthesis of Anisotropic Silver Nanoparticles, Applied Sciences. 11,19 (2021) 8949.
DOI: 10.3390/app11198949
Google Scholar
[12]
T. Chen, W. Wang, T. Tao, A. Pan, X. Mei, Broad-band ultra-low-reflectivity multiscale micro–nano structures by the combination of femtosecond laser ablation and in situ deposition, ACS Applied Materials & Interfaces. 12,43 (2020) 49265-49274.
DOI: 10.1021/acsami.0c16894
Google Scholar
[13]
H. Naser, M.A. Alghoul, M.K. Hossain, N. Asim, M.F. Abdullah, M.S. Ali, F.G. Alzubi, N. Amin, The role of laser ablation technique parameters in synthesis of nanoparticles from different target types, Journal of Nanoparticle Research. 21,11 (2019) 1-28.
DOI: 10.1007/s11051-019-4690-3
Google Scholar
[14]
R. Jagdheesh, J. García-Ballesteros, J.L. Ocaña, One-step fabrication of near superhydrophobic aluminum surface by nanosecond laser ablation, Applied Surface Science. 374 (2016) 2-11.
DOI: 10.1016/j.apsusc.2015.06.104
Google Scholar
[15]
A. Al-Kattan, G. Tselikov, K. Metwally, A.A. Popov, S. Mensah, A.V. Kabashin, Laser ablation-assisted synthesis of plasmonic Si@Au core-satellite nanocomposites for biomedical applications, Nanomaterials, 11,3 (2021) 592.
DOI: 10.3390/nano11030592
Google Scholar
[16]
A.M. Mostafa, E.A. Mwafy, Synthesis of ZnO and Au@ZnO core/shell nano-catalysts by pulsed laser ablation in different liquid media, Journal of Materials Research and Technology. 9,3 (2020) 3241-3248.
DOI: 10.1016/j.jmrt.2020.01.071
Google Scholar
[17]
S.N. Rashid, Effect of Nd: YAG Laser on Flour Beetle, Tikrit Journal of Pure Science. 23,4 (2018) 83-89.
Google Scholar
[18]
A.S. Jasim, S.N. Rashid, A.J. Asaad, Study the Interaction of CO2 Laser with ZnO Thin Films and Its Effect on Its Topographic and Optical Properties, Proceeding of First International and the Third Scientific Conference, University of Tikrit 17 – 18 Dec. P4 (2018) 139-146.
Google Scholar
[19]
V.P. Veiko, V.I. Konov, Fundamentals of laser-assisted micro-and nanotechnologies, Springer International Publishing, (2014).
Google Scholar
[20]
N.M. Al-Nuaimi, Studying the optical and structural properties of gold and silver nanoparticles prepared by the laser ablation method and investigating their effect on the activity of bacteria, PhD dissertation, College of Education For Pure Science, University of Mosul, (2021).
Google Scholar
[21]
M.V. Rukosuyev, J. Lee, S.J. Cho, G. Lim, M.B.G. Jun, One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation, Applied Surface Science, 313 (2014) 411-417.
DOI: 10.1016/j.apsusc.2014.05.224
Google Scholar
[22]
W.M. Khilkal, Productions and Studied the Properties of Some Metals and Metals Oxide Nanoparticles by Using Laser Ablation in Different Solutions, M.Sc. thesis, College of Science for Women, University of Babylon, (2015).
Google Scholar
[23]
Z.G. Zhang, H. Liu, X.X. Wang, J. Zhang, M. Yu, S. Ramakrishna, Y.Z. Long, One-step low temperature hydrothermal synthesis of flexible TiO2/PVDF@MoS2 core-shell heterostructured fibers for visible-light-driven photocatalysis and self-cleaning, Nanomaterials. 9,3 (2019) 431.
DOI: 10.3390/nano9030431
Google Scholar