Binder-Free Fe2O3- C-Ni Composite for Supercapacity Eletrode

Article Preview

Abstract:

Fe2O3-C-Ni heterojunction structured composite on foam Ni was successfully prepared by simple and effective hydrothermal reaction. The obtained material had good structural stability and excellent electrical conductivity. This binder-free Fe2O3-C-Ni electrode exhibits typical pseudocapacitance. Specific capacitance of Fe2O3-C-Ni in 1.0 mol L-1 KOH reaches 844.6 F g-1, which is higher than that of Fe2O3-Ni and C-Ni electrodes. For practice application, assembled Fe2O3-C-Ni//AC capacitor exhibits a long-term cycling performance with remains 79.5% capacitance retention within 20000 cycles at 1 A g-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-97

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Aldalbahi, Samuel E, Alotaibi B S, El-Hamshary H and Yoon S S. Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications, Journal of Materials Science and Technology, 82, PP: 47-56, 2021. https://doi.org/10.1016/j.jmst.2020.11.066.

DOI: 10.1016/j.jmst.2020.11.066

Google Scholar

[2] Wang H, Wang M, Zhang J, Wang N, Wang J and Yang J. Preparation of fly ash-based cobalt-iron silicate as supercapacitor electrode material, Chemical Engineering Journal, 434, PP: 134661-134670, 2022. https://doi.org/10.1016/j.cej.2022.134661.

DOI: 10.1016/j.cej.2022.134661

Google Scholar

[3] Zhu M, Luo Q, Chen Q, Wei W, Zhang Q and Li S. Glycerol-assisted tuning of the phase and morphology of iron oxide nanostructures for supercapacitor electrode materials, Materials Chemistry Frontiers, 5(6), PP: 2758-2770, 2021. https://doi.org/10.1039/d0qm00900h.

DOI: 10.1039/d0qm00900h

Google Scholar

[4] Cheng L, Zhang Q, Xu M, Zhai Q and Zhang C. Two-for-one strategy: Three-dimensional porous fe-doped co3o4 cathode and n-doped carbon anode derived from a single bimetallic metal-organic framework for enhanced hybrid supercapacitor-sciencedirect, Journal of Colloid and Interface Science, 583, PP: 299-309, 2021. https://doi.org/10.1016/j.jcis.2020.09.040.

DOI: 10.1016/j.jcis.2020.09.040

Google Scholar

[5] Fu X. Ni foam-supported tin oxide nanowall array: An integrated supercapacitor anode, Molecules, 26(15), PP: 4517-4533, 2021. https://doi.org/10.3390/molecules26154517.

DOI: 10.3390/molecules26154517

Google Scholar

[6] Cao Y X, Zhao Q, Zhou A and Wang J. Free-standing NiCoSe2 nanostructure on ni foam via electrodeposition as high-performance asymmetric supercapacitor electrode, Nanotechnology, 31(33), PP: 335706-335709, 2020. https://doi.org/10.1088/1361-6528/ab8d6a.

DOI: 10.1088/1361-6528/ab8d6a

Google Scholar

[7] Jagtap K D, Barde R V, Waghuley S A and Nemade K R. Metal oxides and its nano composite as electrode materials for supercapacitor: A review, International Journal of Chemical and Physical Sciences, 9(3), PP: 1-10, 2020. https://doi.org/10.30731/ijcps.9.3.2020.1-10.

DOI: 10.30731/ijcps.9.3.2020.1-10

Google Scholar

[8] Nasrin K, Gokulnath S, Karnan M, Subramani K and Sathish M. Redox-additives in aqueous, non-aqueous, and all-solid-state electrolytes for carbon-based supercapacitor: A mini-review, Energy & Fuels, 35(8), PP: 6465-6482, 2021. https://doi.org/10.1021/acs.energyfuels.1c00341.

DOI: 10.1021/acs.energyfuels.1c00341

Google Scholar

[9] Peng W, Li H and Song S. Synthesis of fluorinated graphene/coal-layered double hydroxide composites as electrode materials for supercapacitors, ACS Applied Materials & Interfaces, 9(6), PP: 5204-5212, 2017. https://doi.org/10.1021/acsami.6b11316.

DOI: 10.1021/acsami.6b11316

Google Scholar

[10] Zhang Y, Ma M, Yang J, Su H, Wei H and Dong X. Selective Synthesis of Hierarchical Mesoporous Spinel NiCo2O4 for High-performance Supercapacitors, Nanoscale, 6(8), PP: 4303-4308, 2014. https://doi.org/10.1039/c3nr06564b.

DOI: 10.1039/c3nr06564b

Google Scholar

[11] Zhong Y, Yang Q, Luo K, Wu X, Li X, Liu Y. Tang W, Zeng G and Peng B. Fe(II)-Al(III) layered double hydroxides prepared by ultrasound-assisted co-precipitation method for the reduction of bromate, Journal Of Hazardous Materials, 250-251, PP: 345-353, 2013. http://dx.doi.org/10.1016/j.jhazmat.2013.01.081.

DOI: 10.1016/j.jhazmat.2013.01.081

Google Scholar

[12] Li J, Luo S, Zhang B, Lu J and Hu C. High-performance asymmetric Mn(OH)2//Fe2O3 supercapacitor achieved by enhancing and matching respective properties of cathode and anode materials, Nano Energy, 79, PP: 105410-105419, 2021. https://doi.org/10.1016/j.nanoen.2020.105410.

DOI: 10.1016/j.nanoen.2020.105410

Google Scholar

[13] Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y and Thomas J. Asymmetric supercapacitor electrodes and devices, Advanced Materials, 29(21), PP: 1605336-1605366, 2017. https://doi.org/10.1002/adma.201605336.

DOI: 10.1002/adma.201605336

Google Scholar