Electronic Structure, Magnetism and Magnetocrystalline Anisotropy of Antiferromagnetic Semiconducting Chalcopyrite

Article Preview

Abstract:

Herein, we have predicted the electronic and magnetic properties and magnetocrystalline anisotropy (MCA) of the most stabilized antiferromagnetic (AFM) ground state of bulk chalcopyrite (CuFeS$_{2}$) and films with various different thicknesses. We have shown that the easy axis of bulk structure is along the [001] direction and it agrees with the results of neutron measurements. For the CuFeS$_{2}$ film, our results have indicated that the ground state of ultra-thin film is ferromagnetic (FM) and the easy axis of ultra-thin film is in-plane. As increased the thickness of the film, its ground state becomes the AFM, and the easy axis is changed as out-plane. It may be a natural candidate material for integrating spintronics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-31

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Hulliger, Struct. Bonding (Berlin) (1968), p.83.

Google Scholar

[2] C. I. Pearce, R. A. D. Pattrick, D. J. Vaugham, C. M. B. Henderson and G. van der Laan, Copper oxidation state in chalcopyrite: Mixed Cu d9 and d10 characteristics, Geochim. Cosmochim. Acta Vol. 70 (2006) p.4635.

DOI: 10.1016/j.gca.2006.05.017

Google Scholar

[3] F. J. DiSalvo, Solid-state chemistry: a rediscovered chemical frontier, Sci. Vol. 247 (1990) p.649.

Google Scholar

[4] A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Sci. Vol. 271 (1996) p.933.

Google Scholar

[5] J. R. Heath, P. J. Kuekes, G. S. Snider and R. S. Williams, A defect-tolerant computer architecture: opportunities for nanotechnology, Sci. Vol. 280 (1998) p.1716.

DOI: 10.1126/science.280.5370.1716

Google Scholar

[6] J. L. Shay and L. H. Wernick, Ternary chalcopyrite semiconductor: growth, electronic properties and applications, (Oxford: Pergamon Press) (1975) p.244.

DOI: 10.1016/b978-0-08-017883-7.50012-3

Google Scholar

[7] T. Teranishi, K. Sato and K.Kondo, Optical properties of a magnetic semiconductor: chalcopyrite CuFeS2: I. Absorption spectra of CuFeS2 and Fe-doped CuAlS2 and CuGaS2, J. Phys. Soc. Japan Vol. 36 (1974) p.1618.

DOI: 10.1143/jpsj.36.1618

Google Scholar

[8] S. R. Hall and J. M. Stewart, The crystal structure refinement of chalcopyrite CuFeS2, Acta Crystallogr. Vol. B29 (1973) p.579.

Google Scholar

[9] I. Kh. Khabibullin, N. N. Garifyanov, and V. L. Matukhin, Special features of the magnetic behaviour of the CuFeS2 semiconductor at low temperatures, Russ. Phys. J. Vol. 51 (2008) p.767.

DOI: 10.1007/s11182-008-9109-z

Google Scholar

[10] V. V. Klekovkina, R. R. Gainov, F. G. Vagizov, A. V. Dooglav, V. A. Golovanevskiy and I. N. Penkov, Oxidation and magnetic states of chalcopyrite CuFeS2: A first principles calculation, Opt. Spectrosc. Vol. 116 (2014) p.885.

DOI: 10.1134/s0030400x14060149

Google Scholar

[11] S. Conejeros, P. Alemany, M. Llunell, I. P. R. Moreira, V. Sanchez and J. Llanos, Electronic structure and magnetic properties of CuFeS2, Inorg. Chem. Vol. 54 (2015) p.4840.

DOI: 10.1021/acs.inorgchem.5b00399

Google Scholar

[12] R. Khaledialidusti, A. K. Mishra and A. Barnoush, Temperature-dependent properties of magnetic CuFeS2 from first-principles calculations: Structure, mechanics, and thermodynamics, AIP Adv. Vol. 9 (2019) p.065021

DOI: 10.1063/1.5084308

Google Scholar

[13] T. Teranishi, Magnetic and electric properties of chalcopyrite, J. Phys. Soc. Japan Vol. 16 (1961) p.1881.

Google Scholar

[14] J. C. Woolley, A. M. Lamarche, G. Lamarche, M. Quintero, I. P. Swainson and T. M. Holden, Low temperature magnetic behaviour of CuFeS2 from neutron diffraction data, J. Magn. Magn. Mater. Vol. 162 (1996) p.347.

DOI: 10.1016/s0304-8853(96)00252-1

Google Scholar

[15] T. E. Engin, A. V. Powell and S. Hull, A high temperature diffraction resistance study of chalcopyrite, CuFeS2, J. Solid State Chem. Vol. 184 (2011) p.2272.

DOI: 10.1016/j.jssc.2011.06.036

Google Scholar

[16] B. Li, L. Huang, M. Zhong, Z. Wei and J. Li, Electrical and magnetic properties of FeS2 and CuFeS2 nanoplates, RSC Adv. Vol. 5 (2015) p.91103.

DOI: 10.1039/c5ra16918f

Google Scholar

[17] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. Vol. 77 (1996) p.3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[18] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. Vol. 136 (1964) p. B864.

DOI: 10.1103/physrev.136.b864

Google Scholar

[19] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. Vol. 140 (1965) p. A1133.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[20] P. Gianmozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazaaoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovich, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter. Vol. 21 (2009) p.395502

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[21] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. -Y. Ko, A. Kokalj, E. Kucukbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. -V. Nguyen, A. Otero-de-la- Roza, L. Paulatto, S. Ponce, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu and S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO, J.Phys.: Condens. Matter. Vol. 29 (2017) p.465901

DOI: 10.1088/1361-648x/aa8f79

Google Scholar

[22] P. Giannozzi, O. Baseggio, P. Bonfa, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli , P. Delugas, F. F. Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru and S. Baron, Quantum ESPRESSO toward the exascale, J. Chem. Phys. Vol. 152 (2020) p.154105.

DOI: 10.1063/5.0005082

Google Scholar

[23] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B Vol. 41 (1990) p. R7892.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[24] A. D. Corso, Pseudopotentials periodic table: from H to Pu, Comput. Mater. Sci. Vol. 95 (2014) p.337.

Google Scholar

[25] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integration, Phys. Rev. B Vol. 13 (1976) p.5188.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[26] P. E. Blochl, O. Jepsen and O. K. Andersen, Projector augmented-wave method, Phys. Rev. B Vol. 49 (1994) p.16223.

Google Scholar

[27] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. Vol. 64 (1992) p.1045.

DOI: 10.1103/revmodphys.64.1045

Google Scholar

[28] M. Cococcioni and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B Vol. 71 (2005) p.035105.

DOI: 10.1103/physrevb.71.035105

Google Scholar

[29] G. Autes, C. Barreteau, D. Spanjaard and M. Desjonqueres, Magnetism of iron: from the bulk to the monatomic wire, J. Condens. Matter Phys. Vol. 18 (2006) p.6785.

DOI: 10.1088/0953-8984/18/29/018

Google Scholar

[30] D. Li, A. Smogunov, C. Barreteau, F. Ducastelle, and D. Spanjaard, Magnetocrystalline anisotropy energy of Fe(001) and Fe(110) slabs and nanoclusters: A detailed local analysis within a tight-binding model, Phys. Rev. B Vol. 88 (2013) p.214413.

DOI: 10.1103/physrevb.88.219908

Google Scholar

[31] D. Li, C. Barreteau, M. R. Castell, F. Silly, and A. Smogunov, Out- versus in-plane magnetic anisotropy of free Fe and Co nanocrystals: Tight-binding and first-principles studies, Phys. Rev. B Vol. 90 (2014) p.205409.

DOI: 10.1103/physrevb.90.205409

Google Scholar

[32] X.B. Liu, Z. Altounian and D. H. Ryan, Magnetocrystalline anisotropy in Gd(Co,Fe)12B6: A first-principles study, J. Alloys Compd. Vol. 688 (2016) p.188.

DOI: 10.1016/j.jallcom.2016.07.143

Google Scholar

[33] N. N. Sirota and Zh. K. Zhalgasbekova, Root-mean-square displacements of ions and characteristic temperatures of chalcopyrite according to X-ray data at 5–300 K, Dokl. Akad. Nauk SSSR Vol. 321 (1991) p.513.

Google Scholar

[34] T. Jungwirth, X. Marti, P. Wadley and J. Wunderlich, Antiferromagnetic spintronics, Nat. Nanotechnol. Vol. 11 (2016) pp.231-241.

DOI: 10.1038/nnano.2016.18

Google Scholar

[35] B. He, Z. Bao, K. Zhu, W. Feng, H. Sun, N. Pang, N. Tsogbadrakh and D. Odkhuu, Itinerant semiconducting antiferromagnetism in metastable V3Ga, Phys. Status Solidi RRL Vol. 13 (2019) p.1900483.

DOI: 10.1002/pssr.201900483

Google Scholar

[36] G. Donnay, L. M. Corliss, J. D. H. Donnay, N. Elliott and J. M. Hastings, Symmetry of magnetic structures: magnetic structure of chalcopyrite, Phys. Rev. Vol. 112 (1958) p.1917.

DOI: 10.1103/physrev.112.1917

Google Scholar