Investigation of Mhd Non-Newtonian Nanofluid Stagnation-Point Flow with Variable Transport Properties and Multislip Effects: An Application to Solar Radiation

Article Preview

Abstract:

Heat and mass transfer performance of Casson nanofluid for both non-conducting (m=0), electrically conducting (m≠0) fluids with solar radiation effects in stagnation point flow is considered. In this model, entropy, irreversibility, and multi slip impacts over a shrinking, static, and stretching sheet are investigated. To minimize the energy used in the solar system, it is important to monitor the processes of heat and mass transfer in the solar radiation process. The slips boundary conditions acts as a closure of the fluid velocity, mass, and heat transfer differential equations. The equations obtained are solved numerically via Galerkin Weighted Residual Method (GWRM). In the limiting sense, the present results conform with the existing work. The Behaviors of the flow physical quantities, temperature, concentration, and velocity for distinct values of the applicable dimensionless numbers are demonstrated with tables and graphs. The results reveal that, for a theoretical account of thermal boundary layers, Prandtl number serves as a variable. Furthermore, higher values of variable thermal conductivity have a significant influence on the skin friction coefficient than the case of constant variable thermal conductivity even when the fluid viscosity is assumed to be variable. The structure of the new method can be applied to the development of oil production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-88

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Obalalu, O. A. Ajala, A. T. Adeosun, F. A. Wahaab, A. Oluwaseyi, and L. L. Adebayo, Natural Convective Non-Newtonian Casson Fluid Flow in a Porous Medium with Slip and Temperature Jump Boundary Conditions, Petroleum and Coal. 62 (2020) 1532-1545.

Google Scholar

[2] M. I. Khan, M. Waqas, T. Hayat, and A. Alsaedi, A comparative study of Casson fluid with homogeneous-heterogeneous reactions, Journal of colloid interface science. 498 (2017) 85-90.

DOI: 10.1016/j.jcis.2017.03.024

Google Scholar

[3] A. M. Obalalu, I. Kazeem, A. Abdulrazaq, O. A. Ajala, A. Oluwaseyi, A. T. Adeosun, L. L. Adebayo, and F. A. Wahaab, Numerical simulation of entropy generation for casson fluid flow through permeable walls and convective heating with thermal radiation effect, Journal of the Serbian Society for Computational Mechanics. 14 (2020) 503-519.

DOI: 10.24874/jsscm.2020.14.02.10

Google Scholar

[4] A. Mokhefi, M. Bouanini, M. Elmir, and P. Spitéri. Effect of an anchor geometry on the hydrodynamic characteristics of a nanofluid in agitated tank. Journal. Year; 409179-193.

DOI: 10.4028/www.scientific.net/ddf.409.179

Google Scholar

[5] M. Rahimi-Gorji, O. Pourmehran, M. Gorji-Bandpy, and D. Ganji, Unsteady squeezing nanofluid simulation and investigation of its effect on important heat transfer parameters in presence of magnetic field, Journal of the Taiwan Institute of Chemical Engineers. 67 (2016) 467-475.

DOI: 10.1016/j.jtice.2016.08.001

Google Scholar

[6] W. Jamshed, N. a. a. M. Nasir, S. S. P. M. Isa, R. Safdar, F. Shahzad, K. S. Nisar, M. R. Eid, A.-H. Abdel-Aty, and I. Yahia, Thermal growth in solar water pump using Prandtl–Eyring hybrid nanofluid: a solar energy application, Scientific reports. 11 (2021) 1-21.

DOI: 10.1038/s41598-021-98103-8

Google Scholar

[7] A. W. Hussein and M. W. Ahmed, Solar Energy: Solution to fuel dilemma, International Journal of Research in Engineering Technology. 2 (2014) 99-108.

Google Scholar

[8] J. P. Kirkpatrick, "An investigation of the effectiveness of solar power on Navy surface combatants," NAVAL POSTGRADUATE SCHOOL MONTEREY CA2013.

Google Scholar

[9] S. U. Choi and J. A. Eastman, "Enhancing thermal conductivity of fluids with nanoparticles," Argonne National Lab., IL (United States)1995.

Google Scholar

[10] A. R. Sajadi, S. S. Sadati, M. Nourimotlagh, O. Pakbaz, D. Ashtiani, and F. Kowsari, Experimental study on turbulent convective heat transfer, pressure drop, and thermal performance characterization of ZnO/water nanofluid flow in a circular tube, Thermal Science. 18 (2014) 1315-1326.

DOI: 10.2298/tsci131114022s

Google Scholar

[11] F. Achard, "James Clerk Maxwell, A treatise on electricity and magnetism, (1873)," in Landmark Writings in Western Mathematics 1640-1940: Elsevier, 2005, pp.564-587.

DOI: 10.1016/b978-044450871-3/50125-x

Google Scholar

[12] M. Malik, M. Naseer, S. Nadeem, and A. Rehman, The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder, Applied Nanoscience. 4 (2014) 869-873.

DOI: 10.1007/s13204-013-0267-0

Google Scholar

[13] A. El-Aziz and A. A. Afify, MHD Casson fluid flow over a stretching sheet with entropy generation analysis and Hall influence, 21 (2019) 592.

DOI: 10.3390/e21060592

Google Scholar

[14] A. M. Obalalu, Performance of Variable Electrical Field (VEF) on Casson Flow Through an Inclined Annular Micro-Channel Embedded in a Porous Medium: Numerical Solution by Using Spectral Collocation Method, Petroleum Coal. 63 (2021).

Google Scholar

[15] O. D. Makinde and A. S. Eegunjobi, Entropy Analysis of Thermally Radiating Magnetohydrodynamic Slip Flow of Casson Fluid in a Microchannel Filled with Saturated Porous Media, Journal of Porous Media. 19 (2016) 799-810.

DOI: 10.1615/jpormedia.v19.i9.40

Google Scholar

[16] N. Casson, A flow equation for pigment-oil suspensions of the printing ink type, Rheology of disperse systems. (1959).

Google Scholar

[17] A. M. Obalalu, F. A. Wahaab, and L. L. Adebayo, Heat transfer in an unsteady vertical porous channel with injection/suction in the presence of heat generation, Journal of Taibah University for Science. 14 (2020) 541-548.

DOI: 10.1080/16583655.2020.1748844

Google Scholar

[18] N. Khan, I. Riaz, M. S. Hashmi, S. A. Musmar, S. U. Khan, Z. Abdelmalek, and I. Tlili, Aspects of chemical entropy generation in flow of Casson nanofluid between radiative stretching disks, 22 (2020) 495.

DOI: 10.3390/e22050495

Google Scholar

[19] O. A. Olayemi, A. M. Obalalu, C. B. Odetunde, and O. A. Ajala, Heat transfer enhancement of magnetized nanofluid flow due to a stretchable rotating disk with variable thermophysical properties effects, The European Physical Journal Plus. 137 (2022) 1-12.

DOI: 10.1140/epjp/s13360-022-02579-w

Google Scholar

[20] M. M. Rahman, M. Rahman, M. Samad, and M. Alam, Heat transfer in a micropolar fluid along a non-linear stretching sheet with a temperature-dependent viscosity and variable surface temperature, International Journal of Thermophysics. 30 (2009) 1649.

DOI: 10.1007/s10765-009-0656-5

Google Scholar

[21] A. M. Obalalu, Heat and mass transfer in an unsteady squeezed Casson fluid flow with novel thermophysical properties: Analytical and numerical solution, Heat Transfer. 50 (2021) 7988-8011.

DOI: 10.1002/htj.22263

Google Scholar

[22] M. M. Rahman, A. Aziz, and M. A. Al-Lawatia, Heat transfer in micropolar fluid along an inclined permeable plate with variable fluid properties, International Journal of thermal sciences. 49 (2010) 993-1002.

DOI: 10.1016/j.ijthermalsci.2010.01.002

Google Scholar

[23] A. M. Obalalu, O. A. Ajala, A. O. Akindele, S. Alao, and A. Okunloye, Effect of melting heat transfer on electromagnetohydrodynamic non-newtonian nanofluid flow over a riga plate with chemical reaction and arrhenius activation energy, The European Physical Journal Plus. 136 (2021) 1-16.

DOI: 10.1140/epjp/s13360-021-01869-z

Google Scholar

[24] K. Shigeo and I. Pop, Conjugate free convection from a circular cylinder in a porous medium, International journal of heat mass transfer. 35 (1992) 3105-3113.

DOI: 10.1016/0017-9310(92)90330-u

Google Scholar

[25] S. Nadeem, R. U. Haq, and C. Lee, MHD flow of a Casson fluid over an exponentially shrinking sheet, Scientia Iranica. 19 (2012) 1550-1553.

DOI: 10.1016/j.scient.2012.10.021

Google Scholar

[26] K. U. Rehman, A. A. Malik, M. Malik, N. Sandeep, and N. U. Saba, Numerical study of double stratification in Casson fluid flow in the presence of mixed convection and chemical reaction, Results in physics. 7 (2017) 2997-3006.

DOI: 10.1016/j.rinp.2017.08.020

Google Scholar

[27] P. Vyas and S. Soni, Entropy analysis for MHD Casson fluid flow in a channel subjected to weakly temperature dependent convection coefficient and hydrodynamic slip, Rajasthan Academy of Physical Sciences. 15 (2016) 1-18.

Google Scholar

[28] W. Khan and I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, International journal of heat. 53 (2010) 2477-2483.

DOI: 10.1016/j.ijheatmasstransfer.2010.01.032

Google Scholar

[29] M. H. Abolbashari, N. Freidoonimehr, F. Nazari, and M. M. Rashidi, Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface, J Advanced Powder Technology. 26 (2015) 542-552.

DOI: 10.1016/j.apt.2015.01.003

Google Scholar

[30] T. Fang and A. Aziz, Viscous flow with second-order slip velocity over a stretching sheet, Zeitschrift für Naturforschung A. 65 (2010) 1087-1092.

DOI: 10.1515/zna-2010-1212

Google Scholar

[31] M. Sohail, Z. Shah, A. Tassaddiq, P. Kumam, and P. Roy, Entropy generation in MHD Casson fluid flow with variable heat conductance and thermal conductivity over non-linear bi-directional stretching surface, Scientific Reports. 10 (2020) 1-16.

DOI: 10.1038/s41598-020-69411-2

Google Scholar

[32] S. Shaw, G. Mahanta, and P. Sibanda, Non-linear thermal convection in a Casson fluid flow over a horizontal plate with convective boundary condition, Alexandria Engineering Journal. 55 (2016) 1295-1304.

DOI: 10.1016/j.aej.2016.04.020

Google Scholar

[33] F. A. Wahaab, L. L. Adebayo, A. A. Adekoya, J. Y. Yusuf, A. M. Obalalu, A. O. Yusuff, and B. Alqasem, Electromagnetic wave-induced nanofluid-oil interfacial tension reduction for enhanced oil recovery, Journal of Molecular Liquids. 318 (2020) 114378.

DOI: 10.1016/j.molliq.2020.114378

Google Scholar