[1]
O. Gailitis, Lielausis, On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte, Appl. Magnetohydrodyn. 12 (1961) 143–146.
Google Scholar
[2]
A. Pantokratoras, E. Magyari, EMHD free-convection boundary-layer flow from a Riga-plate, J. Eng. Math. 64 (2009) 303–315.
DOI: 10.1007/s10665-008-9259-6
Google Scholar
[3]
E. Magyari, A. Pantokratoras, Aiding and opposing mixed convection flows over the Riga-plate, Commun. Nonlinear Sci. Numer. Simul. 16 (8) (2011) 3158–3167.
DOI: 10.1016/j.cnsns.2010.12.003
Google Scholar
[4]
A. Ahmad, S. Asghar, S. Afzal, Flow of nanofluid past a Riga plate. J. Magn. Magn. Mater. 2016, 402, 44–48.
DOI: 10.1016/j.jmmm.2015.11.043
Google Scholar
[5]
N. S. Khashi'ie, N. Md Arifin and Ioan Pop, Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-Al2O3/Water Nanofluid, Mathematics 2020, 8, 912;
DOI: 10.3390/math8060912
Google Scholar
[6]
N. V. Ganesh, Q. M. Al-Mdallal, S. Al Fahel, S. Dadoa, Riga – Plate flow of γ Al2O3-water/ethylene glycol with effective Prandtl number impacts, Heliyon 5 (2019) e01651
DOI: 10.1016/j.heliyon.2019.e01651
Google Scholar
[7]
M. M. Bhatti, Efstathios E. Michaelides, Study of Arrhenius activation energy on the thermo-bioconvection nanofuid fow over a Riga plate, Journal of Thermal Analysis and Calorimetry (2020)
DOI: 10.1007/s10973-020-09492-3
Google Scholar
[8]
K. Ramesh, S. U. Khan, M. Jameel, M. Ijaz Khand, Yu-Ming Chue, S. Kadr, Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy, Surfaces and Interfaces 21 (2020) 100749
DOI: 10.1016/j.surfin.2020.100749
Google Scholar
[9]
M. Ayub, T. Abbas, M.M. Bhatti, Inspiration of slip effects on electro magneto hydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate, Eur. Phys. J. Plus. 131 (2016) 1–9.
DOI: 10.1140/epjp/i2016-16193-4
Google Scholar
[10]
R. Ahmad, M. Mustafa, M. Turkyilmazoglu, Buoyancy effects on nanofluid flow past a convectively heated vertical Riga-plate: a numerical study, Int. J. Heat Mass Transf. 111 (2017) 827–835.
DOI: 10.1016/j.ijheatmasstransfer.2017.04.046
Google Scholar
[11]
A. Anjum, N.A. Mir, M. Farooq, M. Javed, S. Ahmad, M.Y. Malik, A.S. Alshomrani, Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate: application of Cattaneo-Christov approach, Results Phys. 9 (2018) 955–960.
DOI: 10.1016/j.rinp.2018.03.024
Google Scholar
[12]
S. Han, Liancun Zheng, Chunrui Li, Xinxin Zhang, Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model, Applied Mathematics Letters 38 (2014) 87–93
DOI: 10.1016/j.aml.2014.07.013
Google Scholar
[13]
V. Tibullo, V. Zampoli, A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids, Mech. Res. Commun. 38 (2011) 77–79.
DOI: 10.1016/j.mechrescom.2010.10.008
Google Scholar
[14]
J. Li, L. Zheng, L. Liu, MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects, Journal of Molecular Liquids 221 (2016) 19–25
DOI: 10.1016/j.molliq.2016.05.051
Google Scholar
[15]
J. Sui, L. Zheng, X. Zhang, Boundary layer heat and mass transfer with Cattaneo-Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity, International Journal of Thermal Sciences 104 (2016) 461e468
DOI: 10.1016/j.ijthermalsci.2016.02.007
Google Scholar
[16]
F. Mabood, T. A. Yusuf, S. A. Shahzad & I. A. Badruddin, Cattaneo-Christov model for triple diffusive natural convection flows over horizontal plate with entropy analysis embedded in porous regime", Part C: Journal of Mech. Eng. Sci., 236(9): (2022); 4776-4790
DOI: 10.1177/09544062211057831
Google Scholar
[17]
C. Y, Wang, three-dimensional flow due to stretching sheet, Physics of fluid, 27, 1915-1917 (1984)
Google Scholar
[18]
C. Liu and H. I. Andersson, Heat transfer over a bidirectional stretching sheet with variable thermal conditions, Int. J. Heat and Mass Transf., 51 (2008), 4018-4024.
DOI: 10.1016/j.ijheatmasstransfer.2007.10.041
Google Scholar
[19]
M. Mustafa, A. Mushtaq, T. Hayat, A. Alsaedi, Radiation effects in three-dimensional flow over a bi-directional exponentially stretching sheet, J. Tai. Inst. Chem. Engg. 47 (2015), 43-49.
DOI: 10.1016/j.jtice.2014.10.011
Google Scholar
[20]
M. Sheikholeslami and R. Ellahi, Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid, Int. J. Heat Mass Transfer, 89 (2015) 799-808
DOI: 10.1016/j.ijheatmasstransfer.2015.05.110
Google Scholar
[21]
Y. Chu; M. Nazeer; M. Khan; F. Hussain; H. Rafi, S. Qayyum and Abdelmalek Z, Combined impacts of heat source/sink, radiative heat flux, temperature dependent thermal conductivity on forced convective Rabinowitsch fluid; International Communications in Heat and Mass Transfer 120(1); (2020) 105011
DOI: 10.1016/j.icheatmasstransfer.2020.105011
Google Scholar
[22]
T. A. Yusuf, R. Naveen Kumar, R. J. Punith Gowda, U.D Akpan, Entropy generation on flow and heat transfer of a reactive MHD Sisko fluid through inclined walls with porous medium, International Journal of Ambient Energy, (2022) doi.org/
DOI: 10.1080/01430750.2021.2013941
Google Scholar
[23]
S. Nadeem, S. Ijaz, N. S. Akbar, Nano particle analysis for blood flow of Prandtl fluid model with stenosis, Int. Nano Lett (2013);3: 35–48.
DOI: 10.1186/2228-5326-3-35
Google Scholar
[24]
U. Nazir, M. Sohail, U. Ali; Application of Catteneo-Christov fluxes on modeling the boundary value problem of Prandtl fluid comprising variable properties, Sci. Rep (2021) 11, 17837
DOI: 10.1038/s41598-021-97420-2
Google Scholar
[25]
N. S. Akbar, Z. H. Khan, R. U. Haq, S. Nadeem, Dual solutions in MHD stagnation point flow of Prandtl fluid impinging on shrinking sheet, Appl Math Mech Engl Ed (2014).
DOI: 10.1007/s10483-014-1836-9
Google Scholar
[26]
K Ghachem, Lioua Kolsi, Chamseddine Mâatki, Ahmed Kadhim Hussein, Mohamed Naceur Borjini, Numerical simulation of three-dimensional double diffusive free convection flow and irreversibility studies in a solar distiller, International Communications in Heat and Mass Transfer 39 (2012) 869–876
DOI: 10.1016/j.icheatmasstransfer.2012.04.010
Google Scholar
[27]
C. Maatki, K. Ghachem, L. Kolsi, A. K. Hussein, M. Borjini, and H. Ben Aissia, Inclination effects of magnetic field direction in 3D double-diffusive natural convection , Applied Mathematics and Computation, Vol. 273, 2016, pp: 178-189.
DOI: 10.1016/j.amc.2015.09.043
Google Scholar
[28]
T. Hayat, S. A. Shehzad, A. Alsaedi, Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation. Appl. Math. Mech. -Engl. Ed. 2013; 34(7):823–32.
DOI: 10.1007/s10483-013-1710-7
Google Scholar
[29]
M. Ramzan, M. Farooq, A. Alsaedi, and T. Hayat, MHD three-dimensional flow of couple stress fluid with Newtonian heating, Eur. Phys. J. Plus (2013) 128: 49
DOI: 10.1140/epjp/i2013-13049-5
Google Scholar
[30]
T. Hayat, T. Muhammad, A. Alsaedi, On three-dimensional flow of couple stress fluid with Cattaneo-Christov heat flux, Chinese Journal of Physics (2017)
DOI: 10.1016/j.cjph.2017.03.003
Google Scholar
[31]
M. Turkyilmazoglu, Three dimensional MHD flow and heat transfer over a stretching/ shrinking surface in a viscoelastic fluid with various physical effects, Int. J. Heat and Mass Transfer, 78 (2014), 150-155.
DOI: 10.1016/j.ijheatmasstransfer.2014.06.052
Google Scholar
[32]
K.G. Kumar, Rizwan-ul-Haq, N.G. Rudraswamy, B.J. Gireesha, Effects of mass transfer on MHD three dimensional flow of a Prandtl liquid over a flat plate in the presence of chemical reaction, Results in Physics 7 (2017) 3465–3471
DOI: 10.1016/j.rinp.2017.08.060
Google Scholar
[33]
M. V. S. Rao, K. Gangadhar and P L N Varma, A spectral relaxation method for three-dimensional MHD flow of nanofluid flow over an exponentially stretching sheet due to convective heating: an application to solar energy, Indian J Phys. (2018)
DOI: 10.1007/s12648-018-1226-0
Google Scholar
[34]
B. Ali, Sajjad Hussain, Yufeng Nie, Ahmed Kadhim Hussein, Danial Habib, Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model, Powder Technology 377 (2021) 439–452
DOI: 10.1016/j.powtec.2020.09.008
Google Scholar