Cattaneo-Christov Model on Three-Dimensional Flow, Heat, and Mass Transfer of Prandtl Fluid over a Riga Plate

Article Preview

Abstract:

This paper examined the three-dimensional stretched flow, heat, and mass transports analysis of Prandtl fluid with the influences of chemical reactions, over a Riga surface. This analysis is investigated in presence of Catteneo-Cristov heat and mass fluxes. The resulting nonlinear models are simplified by appropriate similarity variables. The solutions of the reduced set of coupled equations are obtained numerically via the Chebyshev spectral collocation technique. The obtained numerical results were used to address and discuss the characteristics of flow, heat transfer, mass distribution, skin friction, Nusselt, and Sherwood numbers for various pertinent parameters. In addition, the validation of the present numerical scheme is achieved by comparing it with previous results obtained through other numerical results. It is noticed that the rate of heat and mass transfer escalate for the Prandtl parameter. Also, the thermal and mass distributions scale back with a high estimation of relaxation parameters.This paper examined the three-dimensional stretched flow, heat, and mass transports analysis of Prandtl fluid with the influences of chemical reactions, over a Riga surface. This analysis is investigated in presence of Catteneo-Cristov heat and mass fluxes. The resulting nonlinear models are simplified by appropriate similarity variables. The solutions of the reduced set of coupled equations are obtained numerically via the Chebyshev spectral collocation technique. The obtained numerical results were used to address and discuss the characteristics of flow, heat transfer, mass distribution, skin friction, Nusselt, and Sherwood numbers for various pertinent parameters. In addition, the validation of the present numerical scheme is achieved by comparing it with previous results obtained through other numerical results. It is noticed that the rate of heat and mass transfer escalate for the Prandtl parameter. Also, the thermal and mass distributions scale back with a high estimation of relaxation parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-103

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Gailitis, Lielausis, On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte, Appl. Magnetohydrodyn. 12 (1961) 143–146.

Google Scholar

[2] A. Pantokratoras, E. Magyari, EMHD free-convection boundary-layer flow from a Riga-plate, J. Eng. Math. 64 (2009) 303–315.

DOI: 10.1007/s10665-008-9259-6

Google Scholar

[3] E. Magyari, A. Pantokratoras, Aiding and opposing mixed convection flows over the Riga-plate, Commun. Nonlinear Sci. Numer. Simul. 16 (8) (2011) 3158–3167.

DOI: 10.1016/j.cnsns.2010.12.003

Google Scholar

[4] A. Ahmad, S. Asghar, S. Afzal, Flow of nanofluid past a Riga plate. J. Magn. Magn. Mater. 2016, 402, 44–48.

DOI: 10.1016/j.jmmm.2015.11.043

Google Scholar

[5] N. S. Khashi'ie, N. Md Arifin and Ioan Pop, Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-Al2O3/Water Nanofluid, Mathematics 2020, 8, 912;

DOI: 10.3390/math8060912

Google Scholar

[6] N. V. Ganesh, Q. M. Al-Mdallal, S. Al Fahel, S. Dadoa, Riga – Plate flow of γ Al2O3-water/ethylene glycol with effective Prandtl number impacts, Heliyon 5 (2019) e01651

DOI: 10.1016/j.heliyon.2019.e01651

Google Scholar

[7] M. M. Bhatti, Efstathios E. Michaelides, Study of Arrhenius activation energy on the thermo-bioconvection nanofuid fow over a Riga plate, Journal of Thermal Analysis and Calorimetry (2020)

DOI: 10.1007/s10973-020-09492-3

Google Scholar

[8] K. Ramesh, S. U. Khan, M. Jameel, M. Ijaz Khand, Yu-Ming Chue, S. Kadr, Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy, Surfaces and Interfaces 21 (2020) 100749

DOI: 10.1016/j.surfin.2020.100749

Google Scholar

[9] M. Ayub, T. Abbas, M.M. Bhatti, Inspiration of slip effects on electro magneto hydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate, Eur. Phys. J. Plus. 131 (2016) 1–9.

DOI: 10.1140/epjp/i2016-16193-4

Google Scholar

[10] R. Ahmad, M. Mustafa, M. Turkyilmazoglu, Buoyancy effects on nanofluid flow past a convectively heated vertical Riga-plate: a numerical study, Int. J. Heat Mass Transf. 111 (2017) 827–835.

DOI: 10.1016/j.ijheatmasstransfer.2017.04.046

Google Scholar

[11] A. Anjum, N.A. Mir, M. Farooq, M. Javed, S. Ahmad, M.Y. Malik, A.S. Alshomrani, Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate: application of Cattaneo-Christov approach, Results Phys. 9 (2018) 955–960.

DOI: 10.1016/j.rinp.2018.03.024

Google Scholar

[12] S. Han, Liancun Zheng, Chunrui Li, Xinxin Zhang, Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model, Applied Mathematics Letters 38 (2014) 87–93

DOI: 10.1016/j.aml.2014.07.013

Google Scholar

[13] V. Tibullo, V. Zampoli, A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids, Mech. Res. Commun. 38 (2011) 77–79.

DOI: 10.1016/j.mechrescom.2010.10.008

Google Scholar

[14] J. Li, L. Zheng, L. Liu, MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects, Journal of Molecular Liquids 221 (2016) 19–25

DOI: 10.1016/j.molliq.2016.05.051

Google Scholar

[15] J. Sui, L. Zheng, X. Zhang, Boundary layer heat and mass transfer with Cattaneo-Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity, International Journal of Thermal Sciences 104 (2016) 461e468

DOI: 10.1016/j.ijthermalsci.2016.02.007

Google Scholar

[16] F. Mabood, T. A. Yusuf, S. A. Shahzad & I. A. Badruddin, Cattaneo-Christov model for triple diffusive natural convection flows over horizontal plate with entropy analysis embedded in porous regime", Part C: Journal of Mech. Eng. Sci., 236(9): (2022); 4776-4790

DOI: 10.1177/09544062211057831

Google Scholar

[17] C. Y, Wang, three-dimensional flow due to stretching sheet, Physics of fluid, 27, 1915-1917 (1984)

Google Scholar

[18] C. Liu and H. I. Andersson, Heat transfer over a bidirectional stretching sheet with variable thermal conditions, Int. J. Heat and Mass Transf., 51 (2008), 4018-4024.

DOI: 10.1016/j.ijheatmasstransfer.2007.10.041

Google Scholar

[19] M. Mustafa, A. Mushtaq, T. Hayat, A. Alsaedi, Radiation effects in three-dimensional flow over a bi-directional exponentially stretching sheet, J. Tai. Inst. Chem. Engg. 47 (2015), 43-49.

DOI: 10.1016/j.jtice.2014.10.011

Google Scholar

[20] M. Sheikholeslami and R. Ellahi, Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid, Int. J. Heat Mass Transfer, 89 (2015) 799-808

DOI: 10.1016/j.ijheatmasstransfer.2015.05.110

Google Scholar

[21] Y. Chu; M. Nazeer; M. Khan; F. Hussain; H. Rafi, S. Qayyum and Abdelmalek Z, Combined impacts of heat source/sink, radiative heat flux, temperature dependent thermal conductivity on forced convective Rabinowitsch fluid; International Communications in Heat and Mass Transfer 120(1); (2020) 105011

DOI: 10.1016/j.icheatmasstransfer.2020.105011

Google Scholar

[22] T. A. Yusuf, R. Naveen Kumar, R. J. Punith Gowda, U.D Akpan, Entropy generation on flow and heat transfer of a reactive MHD Sisko fluid through inclined walls with porous medium, International Journal of Ambient Energy, (2022) doi.org/

DOI: 10.1080/01430750.2021.2013941

Google Scholar

[23] S. Nadeem, S. Ijaz, N. S. Akbar, Nano particle analysis for blood flow of Prandtl fluid model with stenosis, Int. Nano Lett (2013);3: 35–48.

DOI: 10.1186/2228-5326-3-35

Google Scholar

[24] U. Nazir, M. Sohail, U. Ali; Application of Catteneo-Christov fluxes on modeling the boundary value problem of Prandtl fluid comprising variable properties, Sci. Rep (2021) 11, 17837

DOI: 10.1038/s41598-021-97420-2

Google Scholar

[25] N. S. Akbar, Z. H. Khan, R. U. Haq, S. Nadeem, Dual solutions in MHD stagnation point flow of Prandtl fluid impinging on shrinking sheet, Appl Math Mech Engl Ed (2014).

DOI: 10.1007/s10483-014-1836-9

Google Scholar

[26] K Ghachem, Lioua Kolsi, Chamseddine Mâatki, Ahmed Kadhim Hussein, Mohamed Naceur Borjini, Numerical simulation of three-dimensional double diffusive free convection flow and irreversibility studies in a solar distiller, International Communications in Heat and Mass Transfer 39 (2012) 869–876

DOI: 10.1016/j.icheatmasstransfer.2012.04.010

Google Scholar

[27] C. Maatki, K. Ghachem, L. Kolsi, A. K. Hussein, M. Borjini, and H. Ben Aissia, Inclination effects of magnetic field direction in 3D double-diffusive natural convection , Applied Mathematics and Computation, Vol. 273, 2016, pp: 178-189.

DOI: 10.1016/j.amc.2015.09.043

Google Scholar

[28] T. Hayat, S. A. Shehzad, A. Alsaedi, Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation. Appl. Math. Mech. -Engl. Ed. 2013; 34(7):823–32.

DOI: 10.1007/s10483-013-1710-7

Google Scholar

[29] M. Ramzan, M. Farooq, A. Alsaedi, and T. Hayat, MHD three-dimensional flow of couple stress fluid with Newtonian heating, Eur. Phys. J. Plus (2013) 128: 49

DOI: 10.1140/epjp/i2013-13049-5

Google Scholar

[30] T. Hayat, T. Muhammad, A. Alsaedi, On three-dimensional flow of couple stress fluid with Cattaneo-Christov heat flux, Chinese Journal of Physics (2017)

DOI: 10.1016/j.cjph.2017.03.003

Google Scholar

[31] M. Turkyilmazoglu, Three dimensional MHD flow and heat transfer over a stretching/ shrinking surface in a viscoelastic fluid with various physical effects, Int. J. Heat and Mass Transfer, 78 (2014), 150-155.

DOI: 10.1016/j.ijheatmasstransfer.2014.06.052

Google Scholar

[32] K.G. Kumar, Rizwan-ul-Haq, N.G. Rudraswamy, B.J. Gireesha, Effects of mass transfer on MHD three dimensional flow of a Prandtl liquid over a flat plate in the presence of chemical reaction, Results in Physics 7 (2017) 3465–3471

DOI: 10.1016/j.rinp.2017.08.060

Google Scholar

[33] M. V. S. Rao, K. Gangadhar and P L N Varma, A spectral relaxation method for three-dimensional MHD flow of nanofluid flow over an exponentially stretching sheet due to convective heating: an application to solar energy, Indian J Phys. (2018)

DOI: 10.1007/s12648-018-1226-0

Google Scholar

[34] B. Ali, Sajjad Hussain, Yufeng Nie, Ahmed Kadhim Hussein, Danial Habib, Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model, Powder Technology 377 (2021) 439–452

DOI: 10.1016/j.powtec.2020.09.008

Google Scholar