Solid Electrolyte Li1.4Al0.4Ti1.6(PO4)3 as for the Lithium-Rich Manganese-Based Cathode Material Coating Li1.2Ni0.13Co0.13Mn0.54O2

Article Preview

Abstract:

Li1.2Ni0.13Co0.13Mn0.54O2 (L2MO) material coated with Li1.3Al0.3Ti1.7(PO4)3(LATP) was synthesized by sol-gel method. The coating amount was 0%, 0.5%, 1%, 1.5%, 2%. It is found that LATP coating improves the cycle stability of the material. After 200 cycles at 0.6 C rate, the cycle retention rate of the uncoated sample is 72.7%, while the retention rate of sample with 1% coating amount reaches 85%. LATP coating improves the rate performance of the material. The sample with 1% coating amount has the best rate performance, and the discharge specific capacity is 71.5 mAh/g at 10 C rate, while the discharge specific capacity of the sample without coating is 60.1 mAh/g. LATP coating alleviates the side reaction between the material surface and the electrolyte. As a solid electrolyte, it promotes the transmission of Li+ and reduces the charge transfer impedance of the material. The thermal stability of these materials was tested by DSC. The results show that LATP coating could improve the thermal stability of the material in charged state.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-55

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Hu, X.L. Pang, Z. Zhou, Recent progress in high-voltage lithium-ion batteries, J. Power source, 237 (2013) 229-242.

DOI: 10.1016/j.jpowsour.2013.03.024

Google Scholar

[2] L.J. Ma, J.Q. Meng, Y. Pan, Y.J. Cheng, Q. Ji, X.X. Zuo, X.Y. Wang, J. Zhu, Y.J. Xia, Microporous binder for the silicon-based lithium-ion battery anode with exceptional rate capability and improved cyclic performance, Langmuir. 36 (2020) 2003-2011.

DOI: 10.1021/acs.langmuir.9b03497

Google Scholar

[3] G.R. Hu, Z.C. Xue, Z.Y. Luo, Z.D. Peng, Y.B. Cao, W.G. Wang, Y.X. Zeng, Y. Huang, T.F. Li, Z.Y. Zhang, K. Du, Improved cycling performance of CeO2-inlaid Li -rich cathode materials for lithium-ion battery Ceram.int. 45(8) (2019) 10633-10639.

DOI: 10.1016/j.ceramint.2019.02.132

Google Scholar

[4] A. Boulineau, L. Simonin, J.F. Colin, C. Bourbon, S. Patoux, First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries, Nano Lett. 13(2013) 3857-3863.

DOI: 10.1021/nl4019275

Google Scholar

[5] M. Luo, W.J. Jiang, X. Han, R.G. Guo, T. Li, L.M. Yu, Synthesisand characterization of full concentration-gradient LiNi0.643Co0.055Mn0.302O2 Cathode Material for Lithium-ion Batteries, Chem. Res. Chin. Univ. 39(2018) 148-156.

Google Scholar

[6] N. Yabuuchi, K. Yoshii, S.T. Myung, I. Nakai, S. Komaba, Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2, J. Am. Chem. Soc. 133(2011) 4404-4419.

DOI: 10.1021/ja108588y

Google Scholar

[7] A.K. Shukla, Q.M. Ramasse, C. Ophus, H. Duncan, F. Hage, G. Chen, Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides, Nat.Commun. 6(2015) 871.

DOI: 10.1038/ncomms9711

Google Scholar

[8] Z.H. Lu, J.R. Dahn, Structure and electrochemistry of layered Li[CrxLi(1/3-x3)Mn(2/3-2x/3)]O2, J. Electrochem. Soc. 149(2002) A815—A822.

Google Scholar

[9] M.M. Geng, K. Yang, H.X. Mao, Y.X. Gao, J.J. Zhong, Study on surface modification of MnMoO4 for improving electrochemical properties of lithium-rich manganese-based cathode Materials, Rare Met. Cemented Carbides.48 (2020) 61-67.

Google Scholar

[10] L.Q. Ban, M. Gao, G.Y. Pang, X.T. Bai, Z. Li, W.D. Zhuang, Phosphorus modification of Li-rich and Mn-based Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material for lithium-ion battery, J. Mater. Eng. 48 (2020) 103-110

Google Scholar

[11] W.D. Wang, W.H. Qiu, Q.Q. Ding, Nickel cobalt manganese based cathode materials for Li-ion batteries technology production and application, first ed., Chemical Industry Press, Beijing, 2015.

Google Scholar

[12] Y.H. Zhai, P.P. Zhang, J.F. Zhou, Y.P. He, H. Huang, Z.C. Guo, Research progress on doping modification of Li-rich manganese-based cathode materials for lithium-ion batteries, Mater Rep. 35 (2021) 7056-7062.

Google Scholar

[13] Z.X. Dong, JM, Zhen, Y. Yang, The effect of carbon coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium ion battery, J. Xiamen Univ. 47 (2008) 224-227.

Google Scholar

[14] J.D. Liu, Y.D. Zhang, J.X. Liu, X.G. Qiu, F.Y. Cheng, In-situ Li3PO4 coating of Li-rich Mn-based cathode materials for lithium-ion batteries, Acta Chim. Sinica. 78(2020) 1426-1433.

DOI: 10.6023/a20070330

Google Scholar

[15] Y.L. Liu, M.Y. Xin, L.N. Cong, H.M. Xie. Recent research progress of interface for polyethylene oxide based solid state battery, Acta Phys. Sim. 69(2020) 79-98

DOI: 10.7498/aps.69.20201588

Google Scholar

[16] Y.L. Liu, M.Y. Xin, L.N. Cong, H.M. Xie, Recent research progress of interface for polyethyleneoxide based solid state battery, Acta Phys. Sinica. 69(2020) 79-98.

Google Scholar

[17] X.Y. Hu, J.Y. Chen, X.X. Lv, N.Y. Yuan, J.N. Ding, Z. Liu, Y. Wang, Preparation and modification of LLO anode by surface coating with La2O3, New Chem. Mater. 48(2020) 138-142.

Google Scholar

[18] W.B. Nie, X.C. Xiao, J.L. Wang, G.T. Lei, Q.Z. Xiao, Z.H. Li, Preparation of Li1.2Mn0.54Co0.13Ni0.13O2@V2O5 core-shell composite and its electrochemical properties, J. Inorg. Mater. 29(2014) 257-263.

Google Scholar

[19] J.M. Lin, T.L. Zhao, Y.H. Wang, Fabrication and electrochemical performance of Li[Li0.2Ni0.2Mn0.6]O2 coated with Li2ZrO3 as cathode material for lithium-ion batteries, J. Mater. Eng. 48(2020) 112-120.

Google Scholar

[20] M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney, Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries, J. Mater. Chem. 17 (30) (2007) 3112-3125.

DOI: 10.1039/b702425h

Google Scholar

[21] J.R. Croy, K.G. Gallagher, M.Balasubramanian, Z.H. Chen, Y Ren, D Kim, S.H. Kang, D.W. Dees, M.M. Thackery, Examining Hysteresis in Composite xLi2MnO3center dot(1-x)LiMO2 Cathode Structures, J.Phy.Chem.C.117(2013) 6525-6536

DOI: 10.1021/jp312658q

Google Scholar

[22] Q. Wu, Y.F. Yin, S.W. Sun, X.P. Zhang, N. Wan, Y. Bai. Novel AlF3 surface modified spinel LiNi0.5Mn1.5O4 for lithium-ion batteries: performance characterization and mechanism exploration, Electrochim. Acta, 158(2015) 73-80.

DOI: 10.1016/j.electacta.2015.01.145

Google Scholar

[23] D. Wang, Y. Huang, Z.Q. Huo, L. Chen, Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material, Electrochim. acta.107 (2013) 461-466.

DOI: 10.1016/j.electacta.2013.05.145

Google Scholar

[24] D.M. Liu, X.J. Fan, Z.H. Li, T Liu, M.H. Sun, C Qian, M Lin, Y.J. Liu, C.D. Liang, A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium ion batteries, Nano Energy.58 (2019) 786-796.

DOI: 10.1016/j.nanoen.2019.01.080

Google Scholar

[25] M.M. Geng, K. Yang, H.X. Mao, Y.X. Gao, J.J. Zhong, Study on surface modification of MnMoO4 for improving electrochemical properties of lithium-rich manganese-based cathode Materials, Rare Met. Cemented Carbides. 48(2020) 61-67.

Google Scholar

[26] D. Han, X.H. Liang, Q.Q. Chang, Y.T. Wang, Q.M. Wu, Study on preparation and performance of LiNi0.5Mn1.5O4-Li1.3Al0.3Ti1.7(PO4)3 anode material, New Chem. Mater. 47(2019) 198-202.

Google Scholar

[27] L.D. Chen, W. Zou, L. Wu, F.J. Xia, Z.Y. Hu, Y. Li, B.L. Su, Nano-Al2O3 coated Li-rich cathode material Li1.2Ni0. 13Co0. 13Mn0. 54O2 for highly improved lithium-ion batteries, Chem. J. Chin. Univ. 41(2020) 1329-1336.

DOI: 10.1016/j.vacuum.2020.109757

Google Scholar

[28] Y.J. Liu, Y.Y. Gao, A.C. Dou, Influence of Li content on the structure and electrochemical performance of Li1+xNi0.25Mn0.75O2.25+x/2 cathode for Li-ion battery, J. Power Sources. 248(2014) 679-684.

DOI: 10.1016/j.jpowsour.2013.10.006

Google Scholar