X-Rays Diffraction Study of InGaN/GaN Heterostructures Grown by MOCVD Technique at Different Temperatures

Article Preview

Abstract:

Indium gallium nitride / gallium nitride (InGaN/GaN) heterostructures were grown by using metal organic vapor deposition technique with four different growth temperatures (740 °C, 760 °C, 780 °C, and 800 °C). The structural properties and crystalline quality were investigated using high resolution X-ray diffraction (HRXRD) technique. XRD ω-2θ scan mode at GaN (002) diffraction plane was performed to assess the film’s quality. Through the simulation fitting, the indium composition and the thickness of the thin films were obtained. From the observation, an increase in the growth temperature resulted in higher intensity and smaller full-width at half maximum value of the InGaN (002) diffraction peak, which indicated improvement to the crystalline quality of the InGaN/GaN heterostructure. Moreover, the indium composition of the InGaN epilayer was found to decrease with an increase of the growth temperature due to the thermal decomposition of In-N bond and its re-evaporation from the growing surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Chen, X. Ji, S.P. Lau, Recent progress in group III-nitride nanostructures: from materials to applications, Materials Science and Engineering: R: Reports. 142 (2020) 100578.

DOI: 10.1016/j.mser.2020.100578

Google Scholar

[2] C.A.M. Fabien, W.A. Doolittle, Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells, Solar Energy Materials and Solar Cells. 130 (2014) 354–363.

DOI: 10.1016/j.solmat.2014.07.018

Google Scholar

[3] L. Sang, M. Liao, N. Ikeda, Y. Koide, M. Sumiya, Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer, Applied Physics Letters. 99 (2011) 161109.

DOI: 10.1063/1.3654155

Google Scholar

[4] J. Wu, W. Walukiewicz, K.M. Yu, W. Shan, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, W.K. Metzger, S. Kurtz, Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system, Journal of Applied Physics. 94 (2003) 6477–6482.

DOI: 10.1063/1.1618353

Google Scholar

[5] B. Chouchen, M.H. Gazzah, A. Bajahzar, H. Belmabrouk, Numerical modeling of InGaN/GaN p-i-n solar cells under temperature and hydrostatic pressure effects, AIP Advances. 9 (2019) 045313.

DOI: 10.1063/1.5092236

Google Scholar

[6] D. Pal, S. Das, Numerical simulation of GaN/InGaN p-i-n solar cells: Role of interlayers in promoting photovoltaic response, Optik. 221 (2020) 165403.

DOI: 10.1016/j.ijleo.2020.165403

Google Scholar

[7] J. Mickevičius, D. Dobrovolskas, T. Steponavičius, T. Malinauskas, M. Kolenda, A. Kadys, G. Tamulaitis, Engineering of InN epilayers by repeated deposition of ultrathin layers in pulsed MOCVD growth, Applied Surface Science. 427 (2018) 1027–1032.

DOI: 10.1016/j.apsusc.2017.09.074

Google Scholar

[8] A.G. Bhuiyan, K. Sugita, A. Hashimoto, A. Yamamoto, InGaN Solar Cells: Present State of the Art and Important Challenges, IEEE Journal of Photovoltaics. 2 (2012) 276–293.

DOI: 10.1109/JPHOTOV.2012.2193384

Google Scholar

[9] P.C. Chang, C.L. Yu, Y.W. Jahn, S.J. Chang, K.H. Lee, Effect of growth temperature on the indium incorporation in ingan epitaxial films, Advanced Materials Research. 287–290 (2011) 1456–1459.

DOI: 10.4028/www.scientific.net/AMR.287-290.1456

Google Scholar

[10] J. Song, S. P. Chang, C. Zhang, T. C. Hsu, J. Han, Significantly improved luminescence properties of nitrogen-polar (0001̅) InGaN multiple quantum wells grown by pulsed metalorganic chemical vapor deposition., ACS Applied Materials & Interfaces. 7 (2015) 273–278.

DOI: 10.1021/am506162z

Google Scholar

[11] Y. Guo, X.L. Liu, H.P. Song, A.L. Yang, X.Q. Xu, G.L. Zheng, H.Y. Wei, S.Y. Yang, Q.S. Zhu, Z.G. Wang, A study of indium incorporation in In-rich InGaN grown by MOVPE, Applied Surface Science. 256 (2010) 3352–3356.

DOI: 10.1016/j.apsusc.2009.11.081

Google Scholar

[12] V. Suresh Kumar, S.Y. Ji, Y.T. Zhang, K. Shojiki, J.H. Choi, T. Kimura, T. Hanada, R. Katayama, T. Matsuoka, Dependence of the V/III Ratio on Indium Incorporation in InGaN Films Grown by Metalorganic Vapour Phase Epitaxy, Journal of Nanoscience and Nanotechnology. 20 (2020) 2979–2986.

DOI: 10.1166/jnn.2020.17466

Google Scholar

[13] M.R. Islam, M.R. Kaysir, M.J. Islam, A. Hashimoto, A. Yamamoto, MOVPE growth of InxGa1−xN (x ∼ 0.4) and fabrication of homo-junction solar cells, Journal of Materials Science & Technology. 29 (2013) 128–136.

DOI: 10.1016/j.jmst.2012.12.005

Google Scholar

[14] A.S. Yusof, Z. Hassan, S.. Ng, M.A. Ahmad, M.A.A.Z. Md Sahar, S.O.S. Hamady, C. Chevallier, The dependence of indium incorporation on specified temperatures in growing InGaN/GaN heterostructure using MOCVD technique, Materials Research Bulletin. 137 (2021) 111176.

DOI: 10.1016/j.materresbull.2020.111176

Google Scholar

[15] D.V.P. McLaughlin, J.M. Pearce, Progress in indium gallium nitride materials for solar photovoltaic energy conversion, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 44 (2013) 1947–1954.

DOI: 10.1007/s11661-013-1622-1

Google Scholar

[16] K. Prabakaran, M. Jayasakthi, S. Surender, S. Pradeep, S. Sanjay, R. Ramesh, M. Balaji, K. Baskar, Investigations on morphology, growth mode and indium incorporation in MOCVD grown InGaN/n-GaN heterostructures, Optik. 175 (2018) 154–162.

DOI: 10.1016/j.ijleo.2018.08.134

Google Scholar

[17] W. C. Tsai, C. H. Hsu, S. F. Fu, F. W. Lee, C. Y. Chen, W. C. Chou, W. K. Chen, W. H. Chang, Optical properties associated with strain relaxations in thick InGaN epitaxial films, Optics Express. 22 (2014) A416.

DOI: 10.1364/OE.22.00A416

Google Scholar

[18] Z. Jia, X. Hao, T. Lu, H. Dong, Z. Jia, A. Zhang, S. Ma, J. Liang, W. Jia, T. Li, B. Xu, The formation of island-shaped morphology on the surface of InGaN/GaN QWs and the enhancement of carrier localization effect caused by high-density V-shaped pits, Materials Science in Semiconductor Processing. 131 (2021) 105848.

DOI: 10.1016/j.mssp.2021.105848

Google Scholar

[19] Z. Liu, S. Nitta, S. Usami, Y. Robin, M. Kushimoto, M. Deki, Y. Honda, M. Pristovsek, H. Amano, Effect of gas phase temperature on InGaN grown by metalorganic vapor phase epitaxy, Journal of Crystal Growth. 509 (2019) 50–53.

DOI: 10.1016/j.jcrysgro.2018.12.007

Google Scholar

[20] K. Zhou, M. Ikeda, J. Liu, S. Zhang, Z. Li, M. Feng, A. Tian, P. Wen, D. Li, L. Zhang, H. Yang, Abnormal InGaN growth behavior in indium-desorption regime in metalorganic chemical vapor deposition, Journal of Crystal Growth. 409 (2015) 51–55.

DOI: 10.1016/j.jcrysgro.2014.09.049

Google Scholar

[21] H.K. Cho, J.Y. Lee, G.M. Yang, Characterization of pit formation in III-nitrides grown by metalorganic chemical vapor deposition, Applied Physics Letters. 80 (2002) 1370–1372.

DOI: 10.1063/1.1454215

Google Scholar

[22] T.Y. Wu, C.C. Chang, K.K. Tiong, Y.C. Lee, S.Y. Hu, L.Y. Lin, T.Y. Lin, Z.C. Feng, Luminescence studies in InxGa1-xN epitaxial layers with different indium contents, Optical Materials. 35 (2013) 1829–1833.

DOI: 10.1016/j.optmat.2013.03.024

Google Scholar