Charge State Control over Point Defects in Sic Devices

Article Preview

Abstract:

Point defects in silicon carbide (SiC) are well positioned for integration with SiC based quantum photonic devices due to the maturity of SiC material and fabrication technology, the plethora of candidate quantum emitters that can be formed in SiC, and the potential for emission over a wide spectral range from the visible to the infrared. However, for each of the available color centers in SiC, only one of the charge states has displayed quantum emission, meaning that the emission strongly depends on the Fermi level and hence the doping concentration in the material. In this contribution, we discuss the methodology and mechanism for electrical charge-state control over point defects in SiC devices.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] J. R. Weber, et al., PNAS 107, 8513 (2010).

Google Scholar

[2] M. W. Doherty, et al., Phys. Rep. 528, 1 (2013).

Google Scholar

[3] N. T. Son, et al., Appl. Phys. Lett. 116, 190501 (2020).

Google Scholar

[4] M. Widmann, et al., Nat. Mater. 14, 164 (2015).

Google Scholar

[5] D. Simin, et al., Phys. Rev. B 95, 161201(R) (2017).

Google Scholar

[6] E. Janzén, et al., Physica B 404, 4354 (2009).

Google Scholar

[7] V. Ivády, et al., Phys. Rev. B 96, 161114(R) (2017).

Google Scholar

[8] S. Castelletto, et al., Nat. Mater. 13, 151 (2014).

Google Scholar

[9] D. J. Christle, et al., Nat. Mater. 14, 160 (2015).

Google Scholar

[10] H. J. von Bardeleben, et al., Phys. Rev. B 94, 121202(R) (2016).

Google Scholar

[11] N. T. Son and I. G. Ivanov, Journ. Appl. Phys. 129, 215702 (2021).

Google Scholar

[12] G. Wolfowicz, et al., Nat. Comm. 8, 1876 (2017).

Google Scholar

[13] M. E. Bathen, et al., npj Quantum Information 5, 111 (2019).

Google Scholar

[14] M. Widmann, et al., Nano Lett. 19, 7173 (2019).

Google Scholar

[15] C. P. Anderson, et al., Science 366, 1225 (2019).

Google Scholar

[16] G. Kresse and J. Furthmüller, Phys. Rev. B 50, 17953 (1996).

Google Scholar

[17] J. Heyd, G. E. Scuseria and M. Ernzerhof, Journ. Chem. Phys. 118, 8207-8215 (2003).

Google Scholar

[18] C. Freysoldt, et al., Rev. Mod. Phys. 86, 253 (2014).

Google Scholar

[19] C. Freysoldt, J. Neugebauer and C. G. van de Walle, Phys. Rev. Lett. 102, 253 016402 (2009).

Google Scholar

[20] J. F. Ziegler, M. D. Ziegler and J. P. Biersack, Nuclear Inst. and Methods in Physics Research B 268, 1818-1823 (2010).

Google Scholar

[21] D. Drouin, et al., Scanning 29, 92-101 (2007).

Google Scholar

[22] T. Hornos, A. Gali and B. G. Svensson, Mater. Sci. Forum 679-680, 261-264 (2011).

Google Scholar

[23] K. Szasz, et al., Phys. Rev. B 91, 121201(R) (2015).

Google Scholar

[24] A. Beste et al., Phys. Rev. B 98, 214107 (2018).

Google Scholar

[25] R. Karsthof, M. E. Bathen, et al., Phys. Rev. B 102, 184111 (2020).

Google Scholar

[26] N. T. Son, et al., Appl. Phys. Lett. 11, 212105 (2019).

Google Scholar