Thermophysical Properties of Cu-Based Subsystems of High-Entropy Alloys

Article Preview

Abstract:

According to the well-known concept of multicomponent high-entropy alloys, high entropy of mixing can stabilize the formation of solid solutions (simple bcc or fcc crystal structure) during solidification. Stabilization of the solid solution and prevention of the formation of intermetallic phases during solidification is provided by the high entropy of mixing in the solid and liquid states. High-entropy alloys have increased strength, high hardness, thermal stability in combination with good resistance to oxidation and corrosion. These properties allow to significantly expand the scope of these alloys. In this work, the electrical resistivity, thermoelectric power and surface tension of binary Cu–Sn, Cu–Ga and Cu–Bi alloys, which are the sub-system components of model low-temperature high-entropy Bi–Cu–Ga–Pb–Sn alloys, have been studied in a wide temperature range including solid and liquid states. The lack of the surface tension data of the above-mentioned alloys is compensated by the model predicted values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-33

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High Entropy Alloys. Fundamentals and Applications, Springer International Publishing, Switzerland, 2016.

Google Scholar

[2] Y. Liu, L. Pu, Y. Yang, Q. He, Z. Zhou, C. Tan, X. Zhao, Q. Zhang, K. N. Tu, A high-entropy alloy as very low melting point solder for advanced electronic packaging, Materials Today Advances 7 (2020) 100101.

DOI: 10.1016/j.mtadv.2020.100101

Google Scholar

[3] D. Luo, Y. Xiao, L. Hardwick, R. Snell, M. Way, X. S. Morell, F. Livera, N. Ludford, C. Panwisawas, H. Dong, R. Goodall, High Entropy Alloys as Filler Metals for Joining, Entropy 23 (2021) 78.

DOI: 10.3390/e23010078

Google Scholar

[4] Yu. Plevachuk, V. Sklyarchuk, Electrophysical measurements for strongly aggressive liquid semiconductors, Meas. Sci. Technol. 12(1) (2001) 23-26.

DOI: 10.1088/0957-0233/12/1/303

Google Scholar

[5] F-Q. Zu, R-R. Shen, Y. Xi, X-F. Li, G-H. Ding, H-M. Liu, Electrical resistivity of liquid Sn–Sb alloy, J. Phys.: Condens. Matter 18 (2006) 2817-2823.

DOI: 10.1088/0953-8984/18/10/007

Google Scholar

[6] C. Li, S. Du, D. Zhao, G. Zhou, H. Geng, Electrical resistivity feature of Cu–Sn–(Bi) alloy melts, Phys. Chem. Liq., 52 (2014) 122-129.

DOI: 10.1080/00319104.2013.806214

Google Scholar

[7] Yu. Plevachuk, V. Sklyarchuk, A. Yakymovych, P. Svec, D. Janickovic, E. Illekova, Electrical conductivity and viscosity of liquid Sn–Sb–Cu alloys, J Mater Sci: Mater Electron. 22 (2011) 631-638.

DOI: 10.1007/s10854-010-0188-6

Google Scholar

[8] A. Roll, H. Motz, Der elektrische Widerstand von metallischen Schmelzen. II II. Der elektrische Widerstand geschmolzener Kupfer-Zinn-, Silber-Zinn- und Magnesium-Blei-Legierungen, Z. Metallkde. 48 (1957) 435-444.

DOI: 10.1515/ijmr-1957-480803

Google Scholar

[9] D.M. North, C.N.J. Wagner, Atomic distributions in liquid copper-tin alloys, Phys. Chem. Liq., 2 (1970) 87-113.

Google Scholar

[10] Yu. Plevachuk, V. Sklyarchuk, N. Shevchenko, S. Eckert. Electrophysical and structure-sensitive properties of liquid Ga–In alloys. Int. J Mater. Research, 106 (2015) 66-71

DOI: 10.3139/146.111151

Google Scholar

[11] Ch. Holzhey, H. Coufal, G. Schubert, J. Brunnhuber, S. Sotier, The Electrical Resistivity of Liquid Cu1-xGax Alloys, Z. Physik B 33 (1979) 25-29.

DOI: 10.1007/bf01325810

Google Scholar

[12] L.-S. Chang, B. Straumal, E. Rabkin, W. Gust, F. Sommer, The solidus line of the Cu–Bi phase diagram, J. Phase Equil. 18(2) (1997) 128-135.

DOI: 10.1007/bf02665694

Google Scholar

[13] S. M. Clarke, M. Amsler, J.P.S. Walsh, T. Yu, Y. Wang, Y. Meng, S. D. Jacobsen, C. Wolverton, D. E. Freedman, Creating Binary Cu–Bi Compounds via High-Pressure Synthesis: A Combined Experimental and Theoretical Study, Chem. Mater. 29 (2017) 5276-5285.

DOI: 10.1021/acs.chemmater.7b01418

Google Scholar

[14] K. Khalouk, C. Chaïb, J.-G. Gasser, Electrical and thermal conductivities and Seebeck coefficient of liquid copper-bismuth alloys, Philosophical Magazine, 89 (2009) 249-262.

DOI: 10.1080/14786430802607085

Google Scholar

[15] Yu. Plevachuk, V. Sklyarchuk, G. Gerbeth, S. Eckert. Thermophysical properties of liquid tin-bismuth alloys. Int. J Mater. Research, 101 (2010) 839-844.

DOI: 10.3139/146.110357

Google Scholar

[16] O. Teppo, J. Niemelä, P. Taskinen, An assessment of the thermodynamic properties and phase diagram of the system Bi-Cu. Thermochim. Acta, 173 (1990) 137-150.

DOI: 10.1016/0040-6031(90)80598-s

Google Scholar

[17] D. Li, P. Franke, S. Fürtauer, D. Cupid, H. Flandorfer, The Cu-Sn phase diagram part II: New thermodynamic assessment. Intermetallics, 34 (2013) 148-158.

DOI: 10.1016/j.intermet.2012.10.010

Google Scholar

[18] J.-B. Li, L.N. Ji, J.K. Liang, Y. Zhang, J. Luo, C.R. Li, G.H. Rao, A thermodynamic assessment of the copper-gallium system. Calphad, 32(2) (2008) 447-453.

DOI: 10.1016/j.calphad.2008.03.006

Google Scholar

[19] I. Egry, E. Ricci, R. Novakovic, S. Ozawa, Surface tension of liquid metals and alloys-recent developments. Adv. Colloid. Interface Sci. 159, (2010) 198-212.

DOI: 10.1016/j.cis.2010.06.009

Google Scholar

[20] J.-H. Shim, Ch.-S. Oh, B.-J Lee, D. N. Lee, Thermodynamic Assessment of the Cu-Sn System. Int. J. Mater. Res., 87(3) (1996) 205-212.

Google Scholar

[21] D. Giuranno, F. Gnecco, E. Ricci, R. Novakovic, Surface tension and wetting behaviour of molten Bi-Pb alloys. Intermetallics, 11(11-12) (2003) 1313-1317.

DOI: 10.1016/s0966-9795(03)00173-0

Google Scholar

[22] R. Novakovic, E. Ricci, D. Giuranno, A. Passerone, Surface and transport properties of Ag-Cu liquid alloys. Surf. Sci. 576(1-3) (2005) 175-187.

DOI: 10.1016/j.susc.2004.12.009

Google Scholar

[23] T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals. Clarendon Press, Oxford (1993)

Google Scholar

[24] B. Oleksiak, J. Łabaj, J. Wieczorek, A. Blacha-Grzechnik, R. Burdzik, Surface Tension of Cu–Bi Alloys and Wettability in a Liquid Alloy – Refractory Material – Gaseous Phase System. Arch. Metall. Mater. 59(1) (2014) 281-285.

DOI: 10.2478/amm-2014-0046

Google Scholar

[25] R. Novakovic, D. Giuranno, E. Ricci, S. Delsante, D. Li, G. Borzone, Bulk and surface properties of liquid Sb-Sn alloys, Surf. Sci. 605 (2011) 248-255.

DOI: 10.1016/j.susc.2010.10.026

Google Scholar

[26] G. Drath, F. Sauerwald, Die Oberflächenspannung geschmolzener Metalle und Legierungen. II. Die Oberflächenspannung von Zinn, Blei, Antimon, Kupfer, Zinn‐Wismut, Blei‐Wismut, Kupfer‐Antimon, Kupfer‐Zinnlegierungen und Gußeisen. Z. Anorg. Chem. 162(1) (1927) 301-320.

DOI: 10.1002/zaac.19271620128

Google Scholar

[27] J. Lee, W. Shimoda, T. Tanaka, Surface tension and its temperature coefficient of liquid Sn-X (X=Ag, Cu) alloys. Mater. Trans. 45(9) (2004) 2864-2870.

DOI: 10.2320/matertrans.45.2864

Google Scholar

[28] Y. Kawai, M. Kishimoto, H. Tsuru, Nippon Kinz. Gakk. 37 (6) (1973) 668.

Google Scholar

[29] S. Amore, E. Ricci, T. Lanata, R. Novakovic, Surface tension and wetting behaviour of molten Cu-Sn alloys. J. Alloys Compd. 452(1) (2008) 161-166.

DOI: 10.1016/j.jallcom.2007.01.178

Google Scholar

[30] Yu. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, R. Novakovic, Thermophysical Properties of the Liquid Ga-In-Sn Eutectic Alloy. J. Chem. Eng. Data, (2014) 59(3) 757-763.

DOI: 10.1021/je400882q

Google Scholar

[31] F. Silze, G. Wiehl, I. Kaban, H. Wendrock, T. Gemming, U. Kühn, J. Eckert, S. Pauly, Wetting behaviour of Cu-Ga alloys on 304L steel. Materials & Design, 91 (2016) 11-18.

DOI: 10.1016/j.matdes.2015.11.034

Google Scholar