Structure and Properties of Melt-Quenched Al4CoCrCuFeNi High-Entropy Alloy

Article Preview

Abstract:

The structure and mechanical properties of a multicomponent high-entropy Al4CoCrCuFeNi alloy in the as-cast and melt-quenched states were investigated. The alloy composition was analyzed based on the literature criteria for predicting the phase formation in high-entropy alloys, which considered the entropy and enthalpy of mixing, valence electron concentration as well as the atomic size difference of the components. The alloy films were synthesized by quenching from the melt using a splat-quenching technique. The cooling rate of the films was estimated to be ~ 106 K/s based on the film thickness. The X-ray diffraction analysis revealed that both as-cast and melt-quenched Al4CoCrCuFeNi alloy samples had an ordered B2 phase in their structure. The microhardness of the as-cast alloy was 6500 MPa, while the microhardness of the melt-quenched film was significantly higher and reached 9400 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-54

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.S. Srivatsan, M. Gupta, High Entropy Alloys. Innovations, advances, and applications, CRC Press, Boca Raton, 2020.

Google Scholar

[2] H. Xiang, F.-Z. Dai, Y. Zhou, High- Entropy Materials. From Basics to Applications, 1st ed., WILEY- VCH GmbH, Weinheim, Germany, 2023.

Google Scholar

[3] J. Brechtl, P.K. Liaw, High-Entropy Materials: Theory, Experiments, and Applications, Springer International Publishing, Cham, 2021.

Google Scholar

[4] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[5] M.C. Gao, J.-W. Yeh, P.K. Liaw, et al., High-Entropy Alloys. Fundamentals and Applications, Springer International Publishing, Cham, 2016.

Google Scholar

[6] T.A. Kosorukova, G. Gerstein, V. V. Odnosum, et al., Microstructure Formation in Cast TiZrHfCoNiCu and CoNiCuAlGaIn High Entropy Shape Memory Alloys: A Comparison, Materials (Basel). 12 (2019) 4227.

DOI: 10.3390/ma12244227

Google Scholar

[7] O.I. Kushnerov, S.I. Ryabtsev, V.F. Bashev, Metastable states and physical properties of Co-Cr-Fe-Mn-Ni high-entropy alloy thin films, Mol. Cryst. Liq. Cryst. 750 (2023) 135–143.

DOI: 10.1080/15421406.2022.2073043

Google Scholar

[8] O.I. Kushnerov, V.F. Bashev, S.I. Ryabtsev, Structure and Properties of Nanostructured Metallic Glass of the Fe–B–Co–Nb–Ni–Si High-Entropy Alloy System, in: Springer Proc. Phys., Springer Science and Business Media Deutschland GmbH, 2021: p.557–567.

DOI: 10.1007/978-3-030-51905-6_38

Google Scholar

[9] O.I. Kushnerov, V.F. Bashev, Structure and Physical Properties of Cast and Splat-Quenched CoCr0.8Cu0.64FeNi High Entropy Alloy, East Eur. J. Phys. (2021) 43–48.

DOI: 10.26565/2312-4334-2021-3-06

Google Scholar

[10] V.А. Polonskyy, V.F. Bashev, O.I. Kushnerov, Structure and corrosion-electrochemical properties of rapidly quenched Fe5CrCuNiMnSi and Fe5CoCuNiMnSi high entropy alloys, J. Chem. Technol. 30 (2022) 88–95.

DOI: 10.15421/332123

Google Scholar

[11] C.-J. Tong, Y.-L. Chen, J.-W. Yeh, et al., Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater.Trans.A. 36 (2005) 881–893.

DOI: 10.1007/s11661-005-0283-0

Google Scholar

[12] Y. Plevachuk, J. Brillo, A. Yakymovych, AlCoCrCuFeNi-Based High-Entropy Alloys: Correlation Between Molar Density and Enthalpy of Mixing in the Liquid State, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 49 (2018) 6544–6552.

DOI: 10.1007/s11661-018-4925-4

Google Scholar

[13] M. Dufanets, V. Sklyarchuk, Y. Plevachuk, et al., The Structural and Thermodynamic Analysis of Phase Formation Processes in Equiatomic AlCoCuFeNiCr High-Entropy Alloys, J. Mater. Eng. Perform. 29 (2020) 7321–7327.

DOI: 10.1007/s11665-020-05250-6

Google Scholar

[14] N. Stepanov, D.G. Shaysultanov, G.A. Salishchev, et al., Mechanical Behavior and Microstructure Evolution during Superplastic Deformation of the Fine-Grained AlCoCrCuFeNi High Entropy Alloy, Mater. Sci. Forum. 838–839 (2016) 302–307.

DOI: 10.4028/www.scientific.net/msf.838-839.302

Google Scholar

[15] M.A. Hemphill, T. Yuan, G.Y. Wang, et al., Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys, Acta Mater. 60 (2012) 5723–5734.

DOI: 10.1016/j.actamat.2012.06.046

Google Scholar

[16] Z.F. Wu, X.D. Wang, Q.P. Cao, et al., Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1 (x = 0 and 2.5) high-entropy alloy films, J. Alloys Compd. 609 (2014) 137–142.

DOI: 10.1016/j.jallcom.2014.04.094

Google Scholar

[17] A. Munitz, M.J. Kaufman, M. Nahmany, et al., Microstructure and mechanical properties of heat treated Al1.25CoCrCuFeNi high entropy alloys, Mater. Sci. Eng. A. 714 (2018) 146–159.

DOI: 10.1016/j.msea.2017.12.084

Google Scholar

[18] Y.Y. Liu, Z. Chen, J.C. Shi, et al., The effect of Al content on microstructures and comprehensive properties in AlxCoCrCuFeNi high entropy alloys, Vacuum. 161 (2019) 143–149.

DOI: 10.1016/j.vacuum.2018.12.009

Google Scholar

[19] H. Ziaei, B. Sadeghi, Z. Marfavi, et al., Phase evolution in mechanical alloying and spark plasma sintering of AlxCoCrCuFeNi HEAs, Mater. Sci. Technol. 36 (2020) 604–614.

DOI: 10.1080/02670836.2020.1722912

Google Scholar

[20] A. Altomare, N. Corriero, C. Cuocci, et al., Main features of QUALX2.0 software for qualitative phase analysis, Powder Diffr. 32 (2017) S129–S134.

DOI: 10.1017/s0885715617000240

Google Scholar

[21] S. Guo, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. Mater. Int. 21 (2011) 433–446.

DOI: 10.1016/s1002-0071(12)60080-x

Google Scholar

[22] C. Zhang, F. Zhang, S. Chen, et al., Computational Thermodynamics Aided High-Entropy Alloy Design, JOM. 64 (2012) 839–845.

DOI: 10.1007/s11837-012-0365-6

Google Scholar

[23] Y. Zhang, Y.J.J. Zhou, J.P.P. Lin, et al., Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater. 10 (2008) 534–538.

DOI: 10.1002/adem.200700240

Google Scholar

[24] S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys, J. Appl. Phys. 109 (2011) 103505.

DOI: 10.1063/1.3587228

Google Scholar

[25] N.A. Krapivka, S.A. Firstov, M. V Karpets, et al., Features of phase and structure formation in high-entropy alloys of the AlCrFeCoNiCu x system (x = 0, 0.5, 1.0, 2.0, 3.0), Phys. Met. Metallogr. 116 (2015) 467–474.

DOI: 10.1134/s0031918x15030084

Google Scholar

[26] A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans. 46 (2005) 2817–2829.

DOI: 10.2320/matertrans.46.2817

Google Scholar

[27] M.C. Troparevsky, J.R. Morris, P.R.C. Kent, et al., Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys, Phys. Rev. X. 5 (2015) 011041.

DOI: 10.1103/physrevx.5.011041

Google Scholar

[28] M.C. Troparevsky, J.R. Morris, M. Daene, et al., Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys, JOM. 67 (2015) 2350–2363.

DOI: 10.1007/s11837-015-1594-2

Google Scholar

[29] Y.P. Wang, B.S. Li, H.Z. Fu, Solid Solution or Intermetallics in a High-Entropy Alloy, Adv. Eng. Mater. 11 (2009) 641–644.

DOI: 10.1002/adem.200900057

Google Scholar