[1]
Z. M. Al-Rashidy, M. M. Farag, N. A. A. Ghany, A. M. Ibrahim, and W. I. Abdel-Fattah, Aqueous electrophoretic deposition and corrosion protection of borate glass coatings on 316 L stainless steel for hard tissue fixation, Surfaces and Interfaces., 7 (2017) 125–133.
DOI: 10.1016/j.surfin.2017.03.010
Google Scholar
[2]
X. Du, Common Problems in Metal Material Testing and Solutions, Journal of Metallic Material Research, 1 (2018) 11–16.
Google Scholar
[3]
D. Yu, J. Wang, J. Tian, X. Xu, J. Dai, and X. Wang, Preparation and characterization of TiO2/ZnO composite coating on carbon steel surface and its anticorrosive behavior in seawater, Compo. B Eng., 46 (2013) 135–144.
DOI: 10.1016/j.compositesb.2012.10.036
Google Scholar
[4]
Y. Shen et al., Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film, Bioelectrochemistry, 132 (2020).
DOI: 10.1016/j.bioelechem.2019.107408
Google Scholar
[5]
A. López-Ortega et al., Development of a superhydrophobic and bactericide organic topcoat to be applied on thermally sprayed aluminum coatings in offshore submerged components, Prog. Org. Coat., 137 (2019).
DOI: 10.1016/j.porgcoat.2019.105376
Google Scholar
[6]
T. Liang et al., Corrosion inhibition effect of nano–SiO2 for galvanized steel superhydrophobic surface, Surf. Coat. Technol., 406 (2021).
Google Scholar
[7]
M. Guy. 1986. C. Engineering. S. : M.-H. B. C. Fontana, "Analisa Laju Korosi pada Pelat Baja Karbon dengan Variasi Ketebalan Coating," Jurnal Teknik Its, vol. 4 (2015) 1–5.
DOI: 10.12962/j23373539.v11i3.88068
Google Scholar
[8]
L. Ma et al., Self-Reporting Coatings for Autonomous Detection of Coating Damage and Metal Corrosion: A Review, J Chem. Eng., (2020) 127854.
Google Scholar
[9]
N. Guo et al., Marine bacteria inhibit corrosion of steel via synergistic biomineralization, J Mater. Sci. Technol., 66 (2021) 82–90.
Google Scholar
[10]
P. Bi et al., Robust super-hydrophobic coating prepared by electrochemical surface engineering for corrosion protection, Coatings, 9 (2019).
DOI: 10.3390/coatings9070452
Google Scholar
[11]
S. A. Mahadik et al., Superhydrophobic silica coating by dip coating method, Appl. Surf. Sci., 27 (2013) 67–72.
DOI: 10.1016/j.apsusc.2013.06.054
Google Scholar
[12]
E. Gonzalez, N. Vejar, R. Solis, L. Muñoz, M. Victoria Encinas, and M. Paez, Sol-Gel Films: Corrosion Protection Coating for Aluminium Alloy, Sol-Gel Method - Design and Synthesis of New Materials with Interesting Physical, Chemical and Biological Properties, (2019).
DOI: 10.5772/intechopen.79712
Google Scholar
[13]
C. Xie et al., Anti-corrosion and self-healing behaviors of waterborne polyurethane composite coatings enhanced via chitosan-modified graphene oxide and phosphate intercalated hydrotalcite, Prog. Org. Coat., 168 (2022) 106881.
DOI: 10.1016/j.porgcoat.2022.106881
Google Scholar
[14]
E. Setyowati, S. F. Amalia, Nazriati, S. Affandi, M. Yuwana, and H. Setyawan, Hydrophobic silica coating based on waterglass on copper by electrophoretic depositon, Applied Mechanics and Materials, 493 (2014) 749–754.
DOI: 10.4028/www.scientific.net/amm.493.749
Google Scholar
[15]
J. Liang, Y. Hu, Y. Wu, and H. Chen, "Facile formation of superhydrophobic silica-based surface on aluminum substrate with tetraethylorthosilicate and vinyltriethoxysilane as co-precursor and its corrosion resistant performance in corrosive NaCl aqueous solution," Surf. Coat. Technol., 240, p.145–153 (2014) 145–153.
DOI: 10.1016/j.surfcoat.2013.12.028
Google Scholar
[16]
S. A. Mahadik, F. Pedraza, and R. S. Vhatkar, Silica based superhydrophobic coating for long-term industrial and domestic applications, J Alloys. Compd., 663 (2016) 487–493.
DOI: 10.1016/j.jallcom.2015.12.016
Google Scholar
[17]
S. Pan, N. Wang, D. Xiong, Y. Deng, and Y. Shi, Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti-corrosion, Appl. Surf. Sci., 389 (2016) 547–553.
DOI: 10.1016/j.apsusc.2016.07.138
Google Scholar
[18]
H. Kang, Y. Park, Y. K. Hong, S. Yoon, M. H. Lee, and D. H. Ha, Solvent-induced charge formation and electrophoretic deposition of colloidal iron oxide nanoparticles, Surfaces and Interfaces, 22 (2021) 100815.
DOI: 10.1016/j.surfin.2020.100815
Google Scholar
[19]
K. Kakaei, M. D. Esrafili, and A. Ehsani, Graphene and Anticorrosive Properties, in Interface Science and Technology., (2019) 303–337.
DOI: 10.1016/b978-0-12-814523-4.00008-3
Google Scholar
[20]
C. Jing, B. Dong, A. Raza, T. Zhang, and Y. Zhang, Corrosion inhibition of layered double hydroxides for metal-based systems, Nano Materials Science., (2020).
DOI: 10.1016/j.nanoms.2020.12.001
Google Scholar
[21]
E. McCafferty, Introduction to Corrosion Science. Alexandria, (2010).
Google Scholar
[22]
Y. Huang et al., Responses of soil microbiome to steel corrosion, NPJ Biofilms Microbiomes., 7 (2021) 6.
Google Scholar
[23]
R. G. Kelly, J. R. Scully, D. Shoesmith, and R. G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering. (2002).
DOI: 10.1201/9780203909133
Google Scholar
[24]
D. S. Chauhan, M. A. Quraishi, A. A. Sorour, and C. Verma, "A review on corrosion inhibitors for high-pressure supercritical CO2 environment: Challenges and opportunities, J Pet. Sci. Eng., 215 (2022) 110695.
DOI: 10.1016/j.petrol.2022.110695
Google Scholar
[25]
T. Couvant, Corrosion in pressurized water reactors (PWRs), Materials Ageing and Degradation in Light Water Reactors: Mechanisms and Management, (2013) 70–80.
DOI: 10.1533/9780857097453.1.70
Google Scholar
[26]
H. P. Hack, Galvanic corrosion, Shreir's Corrosion, (2010) 828–856.
Google Scholar
[27]
J. B. Memet, The corrosion of metallic artefacts in seawater: Descriptive analysis, Corrosion of Metallic Heritage Artefacts: Investigation, Conservation and Prediction of Long Term Behaviour, (2007)152–169.
DOI: 10.1201/9781439824054.ch9
Google Scholar
[28]
N. Birbilis and B. Hinton, Corrosion and corrosion protection of aluminium. Woodhead Publishing Limited, (2010).
Google Scholar
[29]
F. Walsh, G. Ottewill, and D. Barker, Corrosion and protection of metals: II. Types of corrosion and protection methods, Transactions of the Institute of Metal Finishing, 71 (1993)117–120.
DOI: 10.1080/00202967.1993.11871002
Google Scholar
[30]
T. Richardson, B. Cottis, D. Scantlebury, R. Lindsay, S. Lyon, and M. Graham, Shreir's Corrosion, (2010) 2930–2970.
Google Scholar
[31]
C. Ning, L. Mingyan, and Z. Weidong, Fouling and corrosion properties of SiO2 coatings on copper in geothermal water, Ind. Eng. Chem., 51 (2012) 6001–6017.
DOI: 10.1021/ie202091b
Google Scholar
[32]
N. Ali and M. A. Fulazzaky, The empirical prediction of weight change and corrosion rate of low-carbon steel, Heliyon, 6 (2020).
DOI: 10.1016/j.heliyon.2020.e05050
Google Scholar
[33]
P. Prabhuraj and S. Rajakumar, Materials Today : Proceedings Experimental investigation on corrosion behavior of friction stir welded AA7075-T651 aluminium alloy under 3 . 5 % wt NaCl environment, Mater Today. Proc., (2020) 3–10.
DOI: 10.1016/j.matpr.2020.08.422
Google Scholar
[34]
A. G. Fernandez and A. Mallco, Corrosion Monitoring by Electrochemical Impedance Spectroscopy Test of Low- Cr Alloy Steel T 22 and High-Ni Alloy HR 224 in Nitrate Molten Salt Preparation of solar salt, iMedPub Journals Insights in Analytical Electrochemistry, (2018) 1–7.
Google Scholar
[35]
J. Li, Z. Zhao, Y. Zhang, B. Xiang, X. Tang, and H. She, Facile fabrication of superhydrophobic silica coatings with excellent corrosion resistance and liquid marbles, J Solgel. Sci. Technol., 80 (2016) 208–214.
DOI: 10.1007/s10971-016-4076-2
Google Scholar
[36]
S. yu Cai, L. Wen, and Y. Jin, A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution, International Journal of Minerals, Metallurgy and Materials, 24 (2017) 26–28.
DOI: 10.1007/s12613-017-1502-6
Google Scholar
[37]
S. O. Pehkonen and S. Yuan, Introduction and Background, Interface Science and Technology, 23 (2018) 1–11.
Google Scholar
[38]
M. A. Hormozi, M. Yaghoubi, and M. E. Bahrololoom, A Facile Method for Fabrication of Hybrid Hydrophobic-Hydrophilic Surfaces on Anodized Aluminum Template by Electrophoretic Deposition, Thin Solid Films., 724 (2021) 138597.
DOI: 10.1016/j.tsf.2021.138597
Google Scholar
[39]
C. Monticelli, Corrosion inhibitors. Elsevier, (2018).
Google Scholar
[40]
D. Wang and G. P. Bierwagen, Sol-gel coatings on metals for corrosion protection, Prog. Org. Coat., 64 (2009) 327–338.
DOI: 10.1016/j.porgcoat.2008.08.010
Google Scholar
[41]
H. H. Strehblow and P. Marcus, Fundamentals of corrosion. (2011).
Google Scholar
[42]
H. Zhang et al., Review on corrosion and corrosion scale formation upon unlined cast iron pipes in drinking water distribution systems, Journal of Environmental Sciences., (2022).
DOI: 10.1016/j.jes.2022.04.024
Google Scholar
[43]
S. Zhang, P. Xiao, P. Wang, J. Luo, and B. Jiang, Spherical-chain silica with super-hydrophobic surface and ultra-low refractive index for multi-functional broadband antireflective coatings, Solar Energy., 207 (2020) 1222–1230.
DOI: 10.1016/j.solener.2020.05.060
Google Scholar
[44]
D. Yu, J. Tian, J. Dai, and X. Wang, Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater, Electrochim Acta., 97 (2013) 409–419.
DOI: 10.1016/j.electacta.2013.03.071
Google Scholar
[45]
T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance, Surf. Coat. Technol., 200 (2006) 3438–3445.
DOI: 10.1016/j.surfcoat.2004.10.014
Google Scholar
[46]
T. Yetim, K. Turalioğlu, M. Taftali, H. Tekdir, H. Kovaci, and A. F. Yetim, Synthesis and characterization of wear and corrosion resistant Ni-doped Al2O3 nanocomposite ceramic coatings by sol-gel method, Surf. Coat. Technol., 444 (2022) 128659.
DOI: 10.1016/j.surfcoat.2022.128659
Google Scholar
[47]
N. Attarzadeh, M. Molaei, K. Babaei, and A. Fattah-alhosseini, New Promising Ceramic Coatings for Corrosion and Wear Protection of Steels: A Review, Surfaces and Interfaces., 23 (2021) 100997.
DOI: 10.1016/j.surfin.2021.100997
Google Scholar
[48]
M. Salehi, M. Mozammel, and S. M. Emarati, "Superhydrophobic and corrosion resistant properties of electrodeposited Ni-TiO2/TMPSi nanocomposite coating," Colloids Surf A Physicochem Eng. Asp., 573 (2019) 196–204.
DOI: 10.1016/j.colsurfa.2019.04.024
Google Scholar
[49]
A. Altube, E. García-Lecina, N. Imaz, J. A. Díez, P. Ferrón, and J. M. Aizpurua, Influence of deposition conditions on the protective behavior of tetraethyl orthosilicate sol-gel films on AA5754 aluminum alloy, Prog. Org. Coat., 74, (2012) 281–287.
DOI: 10.1016/j.porgcoat.2011.10.018
Google Scholar
[50]
E. Kiele et al., Methyl-modified hybrid organic-inorganic coatings for the conservation of copper, J Cult. Herit., 15 (2014) 242–249.
Google Scholar
[51]
M. Mahmoudi et al., The role of graphene oxide interlayer on corrosion barrier and bioactive properties of electrophoretically deposited ZrO2–10 at. % SiO2 composite coating on 316 L stainless steel, Materials Science and Engineering C., 117(2020) 111342.
DOI: 10.1016/j.msec.2020.111342
Google Scholar
[52]
K. V. Madhuri, Thermal protection coatings of metal oxide powders. INC., (2020).
Google Scholar
[53]
M. L. Reed and G. K. Fedder, 2. Photolithographic microfabrication, Handbook of Sensors and Actuators., 6 (1998) 13–61.
DOI: 10.1016/s1386-2766(98)80003-0
Google Scholar
[54]
H. Ogihara, T. Katayama, and T. Saji, One-step electrophoretic deposition for the preparation of superhydrophobic silica particle/trimethylsiloxysilicate composite coatings, J Colloid Interface Sci., 362 (2011) 560–566.
DOI: 10.1016/j.jcis.2011.06.050
Google Scholar
[55]
Q. Shang and Y. Zhou, Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging, Ceram Int., 42 (2016) 8706–8712.
DOI: 10.1016/j.ceramint.2016.02.105
Google Scholar
[56]
B. Poerwadi, C. W. Kartikowati, R. Oktavian, and O. Novaresa, Manufacture of a hydrophobic silica nanoparticle composite membrane for oil-water emulsion separation, International Journal of Technology., vol. 11 (2020) 364–373.
DOI: 10.14716/ijtech.v11i2.3279
Google Scholar
[57]
A. Purnomo, F. Dalanta, A. D. Oktaviani, and S. Silviana, Superhydrophobic coatings and self-cleaning through the use of geothermal scaling silica in improvement of material resistance, AIP Conf. Proc., 2026 (2018).
DOI: 10.1063/1.5065037
Google Scholar
[58]
S. Silviana, A. Darmawan, F. Dalanta, A. Subagio, F. Hermawan, and H. M. Santoso, Superhydrophobic coating derived from geothermal silica to enhance material durability of bamboo using hexadimethylsilazane (HMDS) and trimethylchlorosilane (TMCS), Materials., 14 (2021)1–20.
DOI: 10.3390/ma14030530
Google Scholar
[59]
T. Ren, G. Tang, B. Yuan, Z. Yan, L. Ma, and X. Huang, "One-step fabrication of robust superhydrophobic coatings with corrosion resistance by a self-curing epoxy-resin-based adhesive," Surf. Coat. Technol., 380 (2019) 125086.
DOI: 10.1016/j.surfcoat.2019.125086
Google Scholar
[60]
S. Silviana, A. Noorpasha, and M. M. Rahman, Preliminary study of chitosan coating silica derived from geotermal solid waste, Civil Engineering and Architecture, 8 (2020) 281–288.
DOI: 10.13189/cea.2020.080311
Google Scholar
[61]
S. Silviana, J. Rahmaningrum, F. H. Setyanto, A. R. Adina, R. A. Yahya, and M. D. Fadholi, Hydrophobic-superoleophilic coating derived from silica with hexamethyldisilazane and methyltrimethoxysilane applied as separator cotton of oil water, in AIP Conference Proceedings, American Institute of Physics Inc., (2023).
DOI: 10.1063/5.0113702
Google Scholar
[62]
S. V. Lamaka et al., Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy, Electrochim Acta, 53 (2008) 4773–4783.
DOI: 10.1016/j.electacta.2008.02.015
Google Scholar
[63]
G. C. Righini and A. Chiappini, Glass optical waveguides: a review of fabrication techniques, Optical Engineering., 53 (2014) 071819.
DOI: 10.1117/1.oe.53.7.071819
Google Scholar
[64]
R. Zandi-Zand, A. Ershad-Langroudi, and A. Rahimi, Silica based organic-inorganic hybrid nanocomposite coatings for corrosion protection, Prog. Org. Coat., 53 (2005) 286–291.
DOI: 10.1016/j.porgcoat.2005.03.009
Google Scholar
[65]
C. Xie et al., ZnO/Acrylic Polyurethane Nanocomposite Superhydrophobic Coating on Aluminum Substrate Obtained via Spraying and Co-Curing for the Control of Marine Biofouling, Surfaces and Interfaces, 22 (2021) 100833.
DOI: 10.1016/j.surfin.2020.100833
Google Scholar
[66]
A. Behera, P. Mallick, and S. S. Mohapatra, "Nanocoatings for anticorrosion, Corrosion Protection at the Nanoscale, (2020) 227–243.
DOI: 10.1016/b978-0-12-819359-4.00013-1
Google Scholar
[67]
M. A. El-Fattah, A. M. El Saeed, and R. A. El-Ghazawy, Chemical interaction of different sized fumed silica with epoxy via ultrasonication for improved coating, Prog. Org. Coat., 129 (2019) 1–9.
DOI: 10.1016/j.porgcoat.2018.12.023
Google Scholar
[68]
A. Rosales, L. Ortiz-frade, I. E. Medina-ramirez, L. A. Godínez, and K. Esquivel, Ultrasonics Sonochemistry Self-cleaning of SiO2 -TiO2 coating : Effect of sonochemical synthetic parameters on the morphological , mechanical , and photocatalytic properties of the films, Ultrason Sonochem., 73 (2021) 105483.
DOI: 10.1016/j.ultsonch.2021.105483
Google Scholar
[69]
R. Taheri-Ledari, J. Rahimi, and A. Maleki, Method screening for conjugation of the small molecules onto the vinyl-coated Fe3O4/silica nanoparticles: Highlighting the efficiency of ultrasonication, Mater. Res. Express., 7, (2020).
DOI: 10.1088/2053-1591/ab69cc
Google Scholar
[70]
M. A. Dheyab, A. A. Aziz, M. S. Jameel, O. A. Noqta, and B. Mehrdel, Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications, Chinese Journal of Physics., 64 (2020) 305–325.
DOI: 10.1016/j.cjph.2019.11.014
Google Scholar
[71]
A. Kopp Alves, C. P. Bergmann, and F. A. Berutti, "Hydrothermal Synthesis," Engineering Materials., 61–76, (2013).
Google Scholar
[72]
S. Wen et al., Hydrothermal synthesis of hydroxyapatite coating on the surface of medical magnesium alloy and its corrosion resistance, Progress in Natural Science: Materials International., 31 (2021) 324–333.
DOI: 10.1016/j.pnsc.2020.12.013
Google Scholar
[73]
D. Song et al., Hydrothermal synthesis and corrosion behavior of the protective coating on Mg-2Zn-Mn-Ca-Ce alloy, Progress in Natural Science: Materials International., 26 (2016) 590–599.
DOI: 10.1016/j.pnsc.2016.11.002
Google Scholar
[74]
X. Tang and X. Yan, Dip-coating for fibrous materials: mechanism, methods and applications, J Solgel. Sci. Technol., 81 (2017) 378–404.
DOI: 10.1007/s10971-016-4197-7
Google Scholar
[75]
X. Wu et al., Preparation of superamphiphobic polymer-based coatings via spray- and dip-coating strategies, Prog. Org. Coat., 90 (2016) 463–471.
DOI: 10.1016/j.porgcoat.2015.08.008
Google Scholar
[76]
M. Jacobs, Y. De Vos, and V. Middelkoop, Thickness controlled SiO2/TiO2 sol-gel coating by spraying, Open Ceramics., 6 (2021) 0–7.
DOI: 10.1016/j.oceram.2021.100121
Google Scholar
[77]
T. A. Sherazi, Encyclopedia of Membranes, Encyclopedia of Membranes, (2020) 1–3.
Google Scholar
[78]
O. P. Oladijo, A. M. Venter, L. A. Cornish, and N. Sacks, X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates, Surf. Coat. Technol., 206 (2012) 4725–4729.
DOI: 10.1016/j.surfcoat.2012.01.044
Google Scholar
[79]
J. Karthikeyan, The advantages and disadvantages of the cold spray coating process, The Cold Spray Materials Deposition Process: Fundamentals and Applications., (2007) 62–71.
DOI: 10.1533/9781845693787.1.62
Google Scholar
[80]
A. Charlot, X. Deschanels, and G. Toquer, Submicron coating of SiO2 nanoparticles from electrophoretic deposition, in Thin Solid Films., (2014) 148–152.
DOI: 10.1016/j.tsf.2013.11.064
Google Scholar
[81]
H. Negishi, Uniform and ultra low-power electrophoretic deposition of silica powder using a nonflammable organic solvent, J Eur. Ceram. Soc., 36 (2016) 285–290.
DOI: 10.1016/j.jeurceramsoc.2015.07.032
Google Scholar
[82]
C. Tsuyuki, A. Yamanaka, and Y. Ogimoto, Phase-field modeling for pH-dependent general and pitting corrosion of iron, Sci. Rep., 8 (2018).
DOI: 10.1038/s41598-018-31145-7
Google Scholar
[83]
M. A. Fulazzaky, Measurement of biochemical oxygen demand of the leachates, Environ. Monit. Assess., 185 (2013) 4721–4734.
DOI: 10.1007/s10661-012-2899-z
Google Scholar
[84]
Y. Zou, J. Wang, and Y. Y. Zheng, Electrochemical techniques for determining corrosion rate of rusted steel in seawater, Corros. Sci., 53 (2011) 208–216.
DOI: 10.1016/j.corsci.2010.09.011
Google Scholar
[85]
S. P. ASTM, ASTM G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International., (2004) 5–7.
Google Scholar
[86]
P. Prabhuraj, S. Rajakumar, and V. Balasubramanian, Developing empirical relationship to predict corrosion rate of high strength AA 7075-T651 aluminium alloy under salt fog environment, International Journal of Electroactive Materials, 4, no. 4 (2016) 44–49.
DOI: 10.1016/j.matpr.2018.03.048
Google Scholar
[87]
M. Morcillo, B. Chico, I. Díaz, H. Cano, and D. de la Fuente, Atmospheric corrosion data of weathering steels. A review, Corros. Sci., 77 (2013) 6–24.
DOI: 10.1016/j.corsci.2013.08.021
Google Scholar
[88]
S. W. Hwang, T. Y. Kim, and S. H. Hyun, Effect of surface modification conditions on the synthesis of mesoporous crack-free silica aerogel monoliths from waterglass via ambient-drying, Microporous and Mesoporous Materials., 130 (2009) 295–302.
DOI: 10.1016/j.micromeso.2009.11.024
Google Scholar
[89]
S. Syed, Atmospheric corrosion of carbon steel at marine sites in Saudi Arabia, Materials and Corrosion., 61 (2010) 238–244.
DOI: 10.1002/maco.200905300
Google Scholar
[90]
X. guang Sun et al., Prediction model for atmospheric corrosion of 7005-T4 aluminum alloy in industrial and marine environments, International Journal of Minerals, Metallurgy and Materials., 25 (2018) 1313–1319.
DOI: 10.1007/s12613-018-1684-6
Google Scholar
[91]
Q. Xu, K. Gao, Y. Wang, and X. Pang, "Characterization of corrosion products formed on different surfaces of steel exposed to simulated groundwater solution," Appl. Surf. Sci., 345 (2015) 10–17.
DOI: 10.1016/j.apsusc.2015.03.143
Google Scholar
[92]
A. Ravikumar, P. Rostron, N. Vahdati, and O. Shiryayev, "Parametric study of the corrosion of API-5L-X65 QT steel using potentiostat based measurements in a flow loop," Applied Sciences (Switzerland)., 11 (2021) 1–17.
DOI: 10.3390/app11010444
Google Scholar
[93]
R. François, S. Laurens, and F. Deby, Steel Corrosion in Reinforced Concrete, Corrosion and its Consequences for Reinforced Concrete Structures., (2018) 1–41.
DOI: 10.1016/b978-1-78548-234-2.50001-9
Google Scholar
[94]
S. P. ASTM, ASTM G 102-89 Standard Practice for Calculation of Information from Electrochemical Corrosion Rates and Related Measurements. (1994).
Google Scholar