Metal Coatings Derived from Modified Silica as Anti-Corrosion

Article Preview

Abstract:

Metal is widely used in various industrial fields such as transportation because of its physical and mechanical strength. However, during its utilization, metal materials are often damaged by corrosion due to chemical reactions between the metal surface and the surrounding environment. Coating is one way to prevent corrosion by isolating metal surfaces from the environment. Conventional anti-corrosion coatings generally use chromate and phosphate-based materials. However, this material has been banned in some countries because it is toxic to the environment. Meanwhile, other methods with the addition of more active metals such as magnesium are considered unaffordable. Therefore, the researchers developed alternative materials that are environmentally friendly and reduce costs by using metal oxide-based materials such as Silicon dioxide (SiO2). The advantage of SiO2 is that it is chemically stable and harmless. SiO2 modification produces hydrophobic properties which increase corrosion resistance. One of the methods to make SiO2 is sol-gel method. The advantages of sol-gel method are simple, affordable, capable of forming a film for attaching chemical properties, flexible for incorporation with other compounds and the coating can be applied in several ways, such as dip coating, spray coating, electrophoretic deposition (EPD), etc. As an anti-corrosion coating, products can be tested for their resistance by analyzing the corrosion rate. This paper reviews silica-based metal coatings as anti-corrosion. The scope of the discussion in this paper is the mechanism, fabrication route, application technique, characterization, and analysis of anti-corrosion ability by studying the corrosion rate of anti-corrosion silica-based coating products for metal substrates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-95

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. M. Al-Rashidy, M. M. Farag, N. A. A. Ghany, A. M. Ibrahim, and W. I. Abdel-Fattah, Aqueous electrophoretic deposition and corrosion protection of borate glass coatings on 316 L stainless steel for hard tissue fixation, Surfaces and Interfaces., 7 (2017) 125–133.

DOI: 10.1016/j.surfin.2017.03.010

Google Scholar

[2] X. Du, Common Problems in Metal Material Testing and Solutions, Journal of Metallic Material Research, 1 (2018) 11–16.

Google Scholar

[3] D. Yu, J. Wang, J. Tian, X. Xu, J. Dai, and X. Wang, Preparation and characterization of TiO2/ZnO composite coating on carbon steel surface and its anticorrosive behavior in seawater, Compo. B Eng., 46 (2013) 135–144.

DOI: 10.1016/j.compositesb.2012.10.036

Google Scholar

[4] Y. Shen et al., Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film, Bioelectrochemistry, 132 (2020).

DOI: 10.1016/j.bioelechem.2019.107408

Google Scholar

[5] A. López-Ortega et al., Development of a superhydrophobic and bactericide organic topcoat to be applied on thermally sprayed aluminum coatings in offshore submerged components, Prog. Org. Coat., 137 (2019).

DOI: 10.1016/j.porgcoat.2019.105376

Google Scholar

[6] T. Liang et al., Corrosion inhibition effect of nano–SiO2 for galvanized steel superhydrophobic surface, Surf. Coat. Technol., 406 (2021).

Google Scholar

[7] M. Guy. 1986. C. Engineering. S. : M.-H. B. C. Fontana, "Analisa Laju Korosi pada Pelat Baja Karbon dengan Variasi Ketebalan Coating," Jurnal Teknik Its, vol. 4 (2015) 1–5.

DOI: 10.12962/j23373539.v11i3.88068

Google Scholar

[8] L. Ma et al., Self-Reporting Coatings for Autonomous Detection of Coating Damage and Metal Corrosion: A Review, J Chem. Eng., (2020) 127854.

Google Scholar

[9] N. Guo et al., Marine bacteria inhibit corrosion of steel via synergistic biomineralization, J Mater. Sci. Technol., 66 (2021) 82–90.

Google Scholar

[10] P. Bi et al., Robust super-hydrophobic coating prepared by electrochemical surface engineering for corrosion protection, Coatings, 9 (2019).

DOI: 10.3390/coatings9070452

Google Scholar

[11] S. A. Mahadik et al., Superhydrophobic silica coating by dip coating method, Appl. Surf. Sci., 27 (2013) 67–72.

DOI: 10.1016/j.apsusc.2013.06.054

Google Scholar

[12] E. Gonzalez, N. Vejar, R. Solis, L. Muñoz, M. Victoria Encinas, and M. Paez, Sol-Gel Films: Corrosion Protection Coating for Aluminium Alloy, Sol-Gel Method - Design and Synthesis of New Materials with Interesting Physical, Chemical and Biological Properties, (2019).

DOI: 10.5772/intechopen.79712

Google Scholar

[13] C. Xie et al., Anti-corrosion and self-healing behaviors of waterborne polyurethane composite coatings enhanced via chitosan-modified graphene oxide and phosphate intercalated hydrotalcite, Prog. Org. Coat., 168 (2022) 106881.

DOI: 10.1016/j.porgcoat.2022.106881

Google Scholar

[14] E. Setyowati, S. F. Amalia, Nazriati, S. Affandi, M. Yuwana, and H. Setyawan, Hydrophobic silica coating based on waterglass on copper by electrophoretic depositon, Applied Mechanics and Materials, 493 (2014) 749–754.

DOI: 10.4028/www.scientific.net/amm.493.749

Google Scholar

[15] J. Liang, Y. Hu, Y. Wu, and H. Chen, "Facile formation of superhydrophobic silica-based surface on aluminum substrate with tetraethylorthosilicate and vinyltriethoxysilane as co-precursor and its corrosion resistant performance in corrosive NaCl aqueous solution," Surf. Coat. Technol., 240, p.145–153 (2014) 145–153.

DOI: 10.1016/j.surfcoat.2013.12.028

Google Scholar

[16] S. A. Mahadik, F. Pedraza, and R. S. Vhatkar, Silica based superhydrophobic coating for long-term industrial and domestic applications, J Alloys. Compd., 663 (2016) 487–493.

DOI: 10.1016/j.jallcom.2015.12.016

Google Scholar

[17] S. Pan, N. Wang, D. Xiong, Y. Deng, and Y. Shi, Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti-corrosion, Appl. Surf. Sci., 389 (2016) 547–553.

DOI: 10.1016/j.apsusc.2016.07.138

Google Scholar

[18] H. Kang, Y. Park, Y. K. Hong, S. Yoon, M. H. Lee, and D. H. Ha, Solvent-induced charge formation and electrophoretic deposition of colloidal iron oxide nanoparticles, Surfaces and Interfaces, 22 (2021) 100815.

DOI: 10.1016/j.surfin.2020.100815

Google Scholar

[19] K. Kakaei, M. D. Esrafili, and A. Ehsani, Graphene and Anticorrosive Properties, in Interface Science and Technology., (2019) 303–337.

DOI: 10.1016/b978-0-12-814523-4.00008-3

Google Scholar

[20] C. Jing, B. Dong, A. Raza, T. Zhang, and Y. Zhang, Corrosion inhibition of layered double hydroxides for metal-based systems, Nano Materials Science., (2020).

DOI: 10.1016/j.nanoms.2020.12.001

Google Scholar

[21] E. McCafferty, Introduction to Corrosion Science. Alexandria, (2010).

Google Scholar

[22] Y. Huang et al., Responses of soil microbiome to steel corrosion, NPJ Biofilms Microbiomes., 7 (2021) 6.

Google Scholar

[23] R. G. Kelly, J. R. Scully, D. Shoesmith, and R. G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering. (2002).

DOI: 10.1201/9780203909133

Google Scholar

[24] D. S. Chauhan, M. A. Quraishi, A. A. Sorour, and C. Verma, "A review on corrosion inhibitors for high-pressure supercritical CO2 environment: Challenges and opportunities, J Pet. Sci. Eng., 215 (2022) 110695.

DOI: 10.1016/j.petrol.2022.110695

Google Scholar

[25] T. Couvant, Corrosion in pressurized water reactors (PWRs), Materials Ageing and Degradation in Light Water Reactors: Mechanisms and Management, (2013) 70–80.

DOI: 10.1533/9780857097453.1.70

Google Scholar

[26] H. P. Hack, Galvanic corrosion, Shreir's Corrosion, (2010) 828–856.

Google Scholar

[27] J. B. Memet, The corrosion of metallic artefacts in seawater: Descriptive analysis, Corrosion of Metallic Heritage Artefacts: Investigation, Conservation and Prediction of Long Term Behaviour, (2007)152–169.

DOI: 10.1201/9781439824054.ch9

Google Scholar

[28] N. Birbilis and B. Hinton, Corrosion and corrosion protection of aluminium. Woodhead Publishing Limited, (2010).

Google Scholar

[29] F. Walsh, G. Ottewill, and D. Barker, Corrosion and protection of metals: II. Types of corrosion and protection methods, Transactions of the Institute of Metal Finishing, 71 (1993)117–120.

DOI: 10.1080/00202967.1993.11871002

Google Scholar

[30] T. Richardson, B. Cottis, D. Scantlebury, R. Lindsay, S. Lyon, and M. Graham, Shreir's Corrosion, (2010) 2930–2970.

Google Scholar

[31] C. Ning, L. Mingyan, and Z. Weidong, Fouling and corrosion properties of SiO2 coatings on copper in geothermal water, Ind. Eng. Chem., 51 (2012) 6001–6017.

DOI: 10.1021/ie202091b

Google Scholar

[32] N. Ali and M. A. Fulazzaky, The empirical prediction of weight change and corrosion rate of low-carbon steel, Heliyon, 6 (2020).

DOI: 10.1016/j.heliyon.2020.e05050

Google Scholar

[33] P. Prabhuraj and S. Rajakumar, Materials Today : Proceedings Experimental investigation on corrosion behavior of friction stir welded AA7075-T651 aluminium alloy under 3 . 5 % wt NaCl environment, Mater Today. Proc., (2020) 3–10.

DOI: 10.1016/j.matpr.2020.08.422

Google Scholar

[34] A. G. Fernandez and A. Mallco, Corrosion Monitoring by Electrochemical Impedance Spectroscopy Test of Low- Cr Alloy Steel T 22 and High-Ni Alloy HR 224 in Nitrate Molten Salt Preparation of solar salt, iMedPub Journals Insights in Analytical Electrochemistry, (2018) 1–7.

Google Scholar

[35] J. Li, Z. Zhao, Y. Zhang, B. Xiang, X. Tang, and H. She, Facile fabrication of superhydrophobic silica coatings with excellent corrosion resistance and liquid marbles, J Solgel. Sci. Technol., 80 (2016) 208–214.

DOI: 10.1007/s10971-016-4076-2

Google Scholar

[36] S. yu Cai, L. Wen, and Y. Jin, A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution, International Journal of Minerals, Metallurgy and Materials, 24 (2017) 26–28.

DOI: 10.1007/s12613-017-1502-6

Google Scholar

[37] S. O. Pehkonen and S. Yuan, Introduction and Background, Interface Science and Technology, 23 (2018) 1–11.

Google Scholar

[38] M. A. Hormozi, M. Yaghoubi, and M. E. Bahrololoom, A Facile Method for Fabrication of Hybrid Hydrophobic-Hydrophilic Surfaces on Anodized Aluminum Template by Electrophoretic Deposition, Thin Solid Films., 724 (2021) 138597.

DOI: 10.1016/j.tsf.2021.138597

Google Scholar

[39] C. Monticelli, Corrosion inhibitors. Elsevier, (2018).

Google Scholar

[40] D. Wang and G. P. Bierwagen, Sol-gel coatings on metals for corrosion protection, Prog. Org. Coat., 64 (2009) 327–338.

DOI: 10.1016/j.porgcoat.2008.08.010

Google Scholar

[41] H. H. Strehblow and P. Marcus, Fundamentals of corrosion. (2011).

Google Scholar

[42] H. Zhang et al., Review on corrosion and corrosion scale formation upon unlined cast iron pipes in drinking water distribution systems, Journal of Environmental Sciences., (2022).

DOI: 10.1016/j.jes.2022.04.024

Google Scholar

[43] S. Zhang, P. Xiao, P. Wang, J. Luo, and B. Jiang, Spherical-chain silica with super-hydrophobic surface and ultra-low refractive index for multi-functional broadband antireflective coatings, Solar Energy., 207 (2020) 1222–1230.

DOI: 10.1016/j.solener.2020.05.060

Google Scholar

[44] D. Yu, J. Tian, J. Dai, and X. Wang, Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater, Electrochim Acta., 97 (2013) 409–419.

DOI: 10.1016/j.electacta.2013.03.071

Google Scholar

[45] T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance, Surf. Coat. Technol., 200 (2006) 3438–3445.

DOI: 10.1016/j.surfcoat.2004.10.014

Google Scholar

[46] T. Yetim, K. Turalioğlu, M. Taftali, H. Tekdir, H. Kovaci, and A. F. Yetim, Synthesis and characterization of wear and corrosion resistant Ni-doped Al2O3 nanocomposite ceramic coatings by sol-gel method, Surf. Coat. Technol., 444 (2022) 128659.

DOI: 10.1016/j.surfcoat.2022.128659

Google Scholar

[47] N. Attarzadeh, M. Molaei, K. Babaei, and A. Fattah-alhosseini, New Promising Ceramic Coatings for Corrosion and Wear Protection of Steels: A Review, Surfaces and Interfaces., 23 (2021) 100997.

DOI: 10.1016/j.surfin.2021.100997

Google Scholar

[48] M. Salehi, M. Mozammel, and S. M. Emarati, "Superhydrophobic and corrosion resistant properties of electrodeposited Ni-TiO2/TMPSi nanocomposite coating," Colloids Surf A Physicochem Eng. Asp., 573 (2019) 196–204.

DOI: 10.1016/j.colsurfa.2019.04.024

Google Scholar

[49] A. Altube, E. García-Lecina, N. Imaz, J. A. Díez, P. Ferrón, and J. M. Aizpurua, Influence of deposition conditions on the protective behavior of tetraethyl orthosilicate sol-gel films on AA5754 aluminum alloy, Prog. Org. Coat., 74, (2012) 281–287.

DOI: 10.1016/j.porgcoat.2011.10.018

Google Scholar

[50] E. Kiele et al., Methyl-modified hybrid organic-inorganic coatings for the conservation of copper, J Cult. Herit., 15 (2014) 242–249.

Google Scholar

[51] M. Mahmoudi et al., The role of graphene oxide interlayer on corrosion barrier and bioactive properties of electrophoretically deposited ZrO2–10 at. % SiO2 composite coating on 316 L stainless steel, Materials Science and Engineering C., 117(2020) 111342.

DOI: 10.1016/j.msec.2020.111342

Google Scholar

[52] K. V. Madhuri, Thermal protection coatings of metal oxide powders. INC., (2020).

Google Scholar

[53] M. L. Reed and G. K. Fedder, 2. Photolithographic microfabrication, Handbook of Sensors and Actuators., 6 (1998) 13–61.

DOI: 10.1016/s1386-2766(98)80003-0

Google Scholar

[54] H. Ogihara, T. Katayama, and T. Saji, One-step electrophoretic deposition for the preparation of superhydrophobic silica particle/trimethylsiloxysilicate composite coatings, J Colloid Interface Sci., 362 (2011) 560–566.

DOI: 10.1016/j.jcis.2011.06.050

Google Scholar

[55] Q. Shang and Y. Zhou, Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging, Ceram Int., 42 (2016) 8706–8712.

DOI: 10.1016/j.ceramint.2016.02.105

Google Scholar

[56] B. Poerwadi, C. W. Kartikowati, R. Oktavian, and O. Novaresa, Manufacture of a hydrophobic silica nanoparticle composite membrane for oil-water emulsion separation, International Journal of Technology., vol. 11 (2020) 364–373.

DOI: 10.14716/ijtech.v11i2.3279

Google Scholar

[57] A. Purnomo, F. Dalanta, A. D. Oktaviani, and S. Silviana, Superhydrophobic coatings and self-cleaning through the use of geothermal scaling silica in improvement of material resistance, AIP Conf. Proc., 2026 (2018).

DOI: 10.1063/1.5065037

Google Scholar

[58] S. Silviana, A. Darmawan, F. Dalanta, A. Subagio, F. Hermawan, and H. M. Santoso, Superhydrophobic coating derived from geothermal silica to enhance material durability of bamboo using hexadimethylsilazane (HMDS) and trimethylchlorosilane (TMCS), Materials., 14 (2021)1–20.

DOI: 10.3390/ma14030530

Google Scholar

[59] T. Ren, G. Tang, B. Yuan, Z. Yan, L. Ma, and X. Huang, "One-step fabrication of robust superhydrophobic coatings with corrosion resistance by a self-curing epoxy-resin-based adhesive," Surf. Coat. Technol., 380 (2019) 125086.

DOI: 10.1016/j.surfcoat.2019.125086

Google Scholar

[60] S. Silviana, A. Noorpasha, and M. M. Rahman, Preliminary study of chitosan coating silica derived from geotermal solid waste, Civil Engineering and Architecture, 8 (2020) 281–288.

DOI: 10.13189/cea.2020.080311

Google Scholar

[61] S. Silviana, J. Rahmaningrum, F. H. Setyanto, A. R. Adina, R. A. Yahya, and M. D. Fadholi, Hydrophobic-superoleophilic coating derived from silica with hexamethyldisilazane and methyltrimethoxysilane applied as separator cotton of oil water, in AIP Conference Proceedings, American Institute of Physics Inc., (2023).

DOI: 10.1063/5.0113702

Google Scholar

[62] S. V. Lamaka et al., Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy, Electrochim Acta, 53 (2008) 4773–4783.

DOI: 10.1016/j.electacta.2008.02.015

Google Scholar

[63] G. C. Righini and A. Chiappini, Glass optical waveguides: a review of fabrication techniques, Optical Engineering., 53 (2014) 071819.

DOI: 10.1117/1.oe.53.7.071819

Google Scholar

[64] R. Zandi-Zand, A. Ershad-Langroudi, and A. Rahimi, Silica based organic-inorganic hybrid nanocomposite coatings for corrosion protection, Prog. Org. Coat., 53 (2005) 286–291.

DOI: 10.1016/j.porgcoat.2005.03.009

Google Scholar

[65] C. Xie et al., ZnO/Acrylic Polyurethane Nanocomposite Superhydrophobic Coating on Aluminum Substrate Obtained via Spraying and Co-Curing for the Control of Marine Biofouling, Surfaces and Interfaces, 22 (2021) 100833.

DOI: 10.1016/j.surfin.2020.100833

Google Scholar

[66] A. Behera, P. Mallick, and S. S. Mohapatra, "Nanocoatings for anticorrosion, Corrosion Protection at the Nanoscale, (2020) 227–243.

DOI: 10.1016/b978-0-12-819359-4.00013-1

Google Scholar

[67] M. A. El-Fattah, A. M. El Saeed, and R. A. El-Ghazawy, Chemical interaction of different sized fumed silica with epoxy via ultrasonication for improved coating, Prog. Org. Coat., 129 (2019) 1–9.

DOI: 10.1016/j.porgcoat.2018.12.023

Google Scholar

[68] A. Rosales, L. Ortiz-frade, I. E. Medina-ramirez, L. A. Godínez, and K. Esquivel, Ultrasonics Sonochemistry Self-cleaning of SiO2 -TiO2 coating : Effect of sonochemical synthetic parameters on the morphological , mechanical , and photocatalytic properties of the films, Ultrason Sonochem., 73 (2021) 105483.

DOI: 10.1016/j.ultsonch.2021.105483

Google Scholar

[69] R. Taheri-Ledari, J. Rahimi, and A. Maleki, Method screening for conjugation of the small molecules onto the vinyl-coated Fe3O4/silica nanoparticles: Highlighting the efficiency of ultrasonication, Mater. Res. Express., 7, (2020).

DOI: 10.1088/2053-1591/ab69cc

Google Scholar

[70] M. A. Dheyab, A. A. Aziz, M. S. Jameel, O. A. Noqta, and B. Mehrdel, Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications, Chinese Journal of Physics., 64 (2020) 305–325.

DOI: 10.1016/j.cjph.2019.11.014

Google Scholar

[71] A. Kopp Alves, C. P. Bergmann, and F. A. Berutti, "Hydrothermal Synthesis," Engineering Materials., 61–76, (2013).

Google Scholar

[72] S. Wen et al., Hydrothermal synthesis of hydroxyapatite coating on the surface of medical magnesium alloy and its corrosion resistance, Progress in Natural Science: Materials International., 31 (2021) 324–333.

DOI: 10.1016/j.pnsc.2020.12.013

Google Scholar

[73] D. Song et al., Hydrothermal synthesis and corrosion behavior of the protective coating on Mg-2Zn-Mn-Ca-Ce alloy, Progress in Natural Science: Materials International., 26 (2016) 590–599.

DOI: 10.1016/j.pnsc.2016.11.002

Google Scholar

[74] X. Tang and X. Yan, Dip-coating for fibrous materials: mechanism, methods and applications, J Solgel. Sci. Technol., 81 (2017) 378–404.

DOI: 10.1007/s10971-016-4197-7

Google Scholar

[75] X. Wu et al., Preparation of superamphiphobic polymer-based coatings via spray- and dip-coating strategies, Prog. Org. Coat., 90 (2016) 463–471.

DOI: 10.1016/j.porgcoat.2015.08.008

Google Scholar

[76] M. Jacobs, Y. De Vos, and V. Middelkoop, Thickness controlled SiO2/TiO2 sol-gel coating by spraying, Open Ceramics., 6 (2021) 0–7.

DOI: 10.1016/j.oceram.2021.100121

Google Scholar

[77] T. A. Sherazi, Encyclopedia of Membranes, Encyclopedia of Membranes, (2020) 1–3.

Google Scholar

[78] O. P. Oladijo, A. M. Venter, L. A. Cornish, and N. Sacks, X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates, Surf. Coat. Technol., 206 (2012) 4725–4729.

DOI: 10.1016/j.surfcoat.2012.01.044

Google Scholar

[79] J. Karthikeyan, The advantages and disadvantages of the cold spray coating process, The Cold Spray Materials Deposition Process: Fundamentals and Applications., (2007) 62–71.

DOI: 10.1533/9781845693787.1.62

Google Scholar

[80] A. Charlot, X. Deschanels, and G. Toquer, Submicron coating of SiO2 nanoparticles from electrophoretic deposition, in Thin Solid Films., (2014) 148–152.

DOI: 10.1016/j.tsf.2013.11.064

Google Scholar

[81] H. Negishi, Uniform and ultra low-power electrophoretic deposition of silica powder using a nonflammable organic solvent, J Eur. Ceram. Soc., 36 (2016) 285–290.

DOI: 10.1016/j.jeurceramsoc.2015.07.032

Google Scholar

[82] C. Tsuyuki, A. Yamanaka, and Y. Ogimoto, Phase-field modeling for pH-dependent general and pitting corrosion of iron, Sci. Rep., 8 (2018).

DOI: 10.1038/s41598-018-31145-7

Google Scholar

[83] M. A. Fulazzaky, Measurement of biochemical oxygen demand of the leachates, Environ. Monit. Assess., 185 (2013) 4721–4734.

DOI: 10.1007/s10661-012-2899-z

Google Scholar

[84] Y. Zou, J. Wang, and Y. Y. Zheng, Electrochemical techniques for determining corrosion rate of rusted steel in seawater, Corros. Sci., 53 (2011) 208–216.

DOI: 10.1016/j.corsci.2010.09.011

Google Scholar

[85] S. P. ASTM, ASTM G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International., (2004) 5–7.

Google Scholar

[86] P. Prabhuraj, S. Rajakumar, and V. Balasubramanian, Developing empirical relationship to predict corrosion rate of high strength AA 7075-T651 aluminium alloy under salt fog environment, International Journal of Electroactive Materials, 4, no. 4 (2016) 44–49.

DOI: 10.1016/j.matpr.2018.03.048

Google Scholar

[87] M. Morcillo, B. Chico, I. Díaz, H. Cano, and D. de la Fuente, Atmospheric corrosion data of weathering steels. A review, Corros. Sci., 77 (2013) 6–24.

DOI: 10.1016/j.corsci.2013.08.021

Google Scholar

[88] S. W. Hwang, T. Y. Kim, and S. H. Hyun, Effect of surface modification conditions on the synthesis of mesoporous crack-free silica aerogel monoliths from waterglass via ambient-drying, Microporous and Mesoporous Materials., 130 (2009) 295–302.

DOI: 10.1016/j.micromeso.2009.11.024

Google Scholar

[89] S. Syed, Atmospheric corrosion of carbon steel at marine sites in Saudi Arabia, Materials and Corrosion., 61 (2010) 238–244.

DOI: 10.1002/maco.200905300

Google Scholar

[90] X. guang Sun et al., Prediction model for atmospheric corrosion of 7005-T4 aluminum alloy in industrial and marine environments, International Journal of Minerals, Metallurgy and Materials., 25 (2018) 1313–1319.

DOI: 10.1007/s12613-018-1684-6

Google Scholar

[91] Q. Xu, K. Gao, Y. Wang, and X. Pang, "Characterization of corrosion products formed on different surfaces of steel exposed to simulated groundwater solution," Appl. Surf. Sci., 345 (2015) 10–17.

DOI: 10.1016/j.apsusc.2015.03.143

Google Scholar

[92] A. Ravikumar, P. Rostron, N. Vahdati, and O. Shiryayev, "Parametric study of the corrosion of API-5L-X65 QT steel using potentiostat based measurements in a flow loop," Applied Sciences (Switzerland)., 11 (2021) 1–17.

DOI: 10.3390/app11010444

Google Scholar

[93] R. François, S. Laurens, and F. Deby, Steel Corrosion in Reinforced Concrete, Corrosion and its Consequences for Reinforced Concrete Structures., (2018) 1–41.

DOI: 10.1016/b978-1-78548-234-2.50001-9

Google Scholar

[94] S. P. ASTM, ASTM G 102-89 Standard Practice for Calculation of Information from Electrochemical Corrosion Rates and Related Measurements. (1994).

Google Scholar