[1]
M. Badaruddin, R.P. Pratama, Sugiyanto, Harnowo, Effect of single and double quenching-tempering heat treatments on microstructures and tensile strength of AISI 4140 in annealing condition, AIP Conference Proceedings, 2592 (2023).
DOI: 10.1063/5.0115822
Google Scholar
[2]
M. Badaruddin, Sugiyanto, H. Wardono, Andoko, C.J. Wang, A.K. Rivai, Improvement of low-cycle fatigue resistance in AISI 4140 steel by annealing treatment, International Journal of Fatigue, 125 (2019) 406-417.
DOI: 10.1016/j.ijfatigue.2019.04.020
Google Scholar
[3]
M. Badaruddin, B. Bakti, B. Prasetyo, Sugiyanto, Effect of austempering temperatures on surface hardness of AISI 4140 steel, IOP Conference Series: Materials Science and Engineering, 1173 (2021) 012027.
DOI: 10.1088/1757-899x/1173/1/012027
Google Scholar
[4]
L. Feng, F. Hu, W. Zhou, R. Ke, G. Zhang, K. Wu, W. Qiao, Influences of Alloying Elements on Continuous Cooling Phase Transformation and Microstructures of Extremely Fine Pearlite, Metals, 9 (2019) 70.
DOI: 10.3390/met9010070
Google Scholar
[5]
J. Feng, M. Wettlaufer, Plane-strain fracture toughness of AISI 4140 steel austempered below MS, Materials Science and Engineering: A, 743 (2019) 494-499.
DOI: 10.1016/j.msea.2018.11.122
Google Scholar
[6]
Heat treatment, in: W.F. Gale, T.C. Totemeier (Eds.) Smithells Metals Reference Book (Eighth Edition), Butterworth-Heinemann, Oxford, 2004, pp.29-83.
Google Scholar
[7]
M. Badaruddin, Fatik Siklus Rendah dan Perambatan Retak Fatik, Deepublish, Yogyakarta, 2023.
Google Scholar
[8]
S. Bakhshi, A. Mirak, The effect of low temperature transformation time on microstructural & textural evolution, mechanical properties and fracture behavior of a low alloy, medium carbon, super strength AISI 4340 steel, Materials Science and Engineering: A, 831 (2022) 142247.
DOI: 10.1016/j.msea.2021.142247
Google Scholar
[9]
R. Dalwatkar, N. Prabhu, R.K.P. Singh, Effect of austempering temperature and time on mechanical properties of SAE 9260 steel, AIP Conference Proceedings, 1957 (2018).
DOI: 10.1063/1.5034329
Google Scholar
[10]
V. Ramasagara Nagarajan, S.K. Putatunda, Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel, International Journal of Fatigue, 62 (2014) 236-248.
DOI: 10.1016/j.ijfatigue.2013.04.018
Google Scholar
[11]
M. Guan, H. Yu, Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite–pearlite and ferrite–bainite microstructures, Materials Science and Engineering: A, 559 (2013) 875-881.
DOI: 10.1016/j.msea.2012.09.036
Google Scholar
[12]
Z. Wu, M. Yang, K. Zhao, Fatigue Crack Initiation and Propagation at High Temperature of New-Generation Bearing Steel, Metals, 11 (2021) 25.
DOI: 10.3390/met11010025
Google Scholar
[13]
D. Birenis, Y. Ogawa, H. Matsunaga, O. Takakuwa, J. Yamabe, Ø. Prytz, A. Thøgersen, Hydrogen-assisted fatigue crack propagation in a pure BCC iron. Part II: Accelerated regime manifested by quasi-cleavage fracture at relatively high stress intensity range values, MATEC Web Conf., 165 (2018) 03010.
DOI: 10.1051/matecconf/201816503010
Google Scholar