[1]
Sochinskii, Arkadii, Damien Colombet, M. Medrano Muñoz, Frédéric Ayela, and Nicolas Luchier. "Flow and heat transfer around a diamond-shaped cylinder at moderate Reynolds number." International Journal of Heat and Mass Transfer 142 (2019): 118435.
DOI: 10.1016/j.ijheatmasstransfer.2019.118435
Google Scholar
[2]
B. P. Abbott, R. Abbott, T. D. Abbott et al., "Observation of Gravitational Waves from a Binary Black Hole Merger," Physical Review Letters, vol. 116, no. 6, Article ID 061102, 2016.
DOI: 10.1142/9789814699662_0011
Google Scholar
[3]
Chyu, M. K., Y. C. Hsing, and V. Natarajan. "Convective heat transfer of cubic fin arrays in a narrow channel." In Turbo Expo: Power for Land, Sea, and Air, vol. 78750, p. V004T09A020. American Society of Mechanical Engineers, 1996.
DOI: 10.1115/96-gt-201
Google Scholar
[4]
Tanda, Giovanni. "Heat transfer and pressure drop in a rectangular channel with diamond-shaped elements." International Journal of Heat and Mass Transfer 44, no. 18 (2001): 3529-3541.
DOI: 10.1016/s0017-9310(01)00018-7
Google Scholar
[5]
Gamrat, Gabriel, Michel Favre-Marinet, Stéphane Le Person, Roland Baviere, and Frédéric Ayela. "An experimental study and modelling of roughness effects on laminar flow in microchannels." Journal of Fluid Mechanics 594 (2008): 399-423.
DOI: 10.1017/s0022112007009111
Google Scholar
[6]
Jeng, Tzer-Ming. "Thermal performance of in-line diamond-shaped pin fins in a rectangular duct." International communications in heat and mass transfer 33, no. 9 (2006): 1139-1146.
DOI: 10.1016/j.icheatmasstransfer.2006.06.001
Google Scholar
[7]
Vanapalli, Srinivas, Hermanus JM ter Brake, Henricus V. Jansen, Johannes Faas Burger, Herman J. Holland, T. T. Veenstra, and Michael Curt Elwenspoek. "Pressure drop of laminar gas flows in a microchannel containing various pillar matrices." Journal of micromechanics and microengineering 17, no. 7 (2007): 1381.
DOI: 10.1088/0960-1317/17/7/021
Google Scholar
[8]
De Smet, J., P. Gzil, N. Vervoort, H. Verelst, G. V. Baron, and G. Desmet. "Influence of the pillar shape on the band broadening and the separation impedance of perfectly ordered 2-D porous chromatographic media." Analytical chemistry 76, no. 13 (2004): 3716-3726.
DOI: 10.1021/ac049873s
Google Scholar
[9]
M. De Pra, W. De Malsche, G. Desmet, P. Schoenmakers, W. Kok, Pillar-structured micro channels for on-chip liquid chromatography: Evaluation of the permeability and separation performance, J. Sep. Sci. 30 (2004) 1453.
DOI: 10.1002/jssc.200600468
Google Scholar
[10]
Bejan, Adrian, and Allan D. Kraus, eds. Heat transfer handbook. Vol. 1. John Wiley & Sons, 2003.
Google Scholar
[11]
Lienhard, John H. "Exterior Shape Factors From Interior Shape Factors." Journal of Heat Transfer 141, no. 6 (2019).
DOI: 10.1115/1.4042912
Google Scholar
[12]
Djeddi, Seyed Reza, Ali Masoudi, and Parviz Ghadimi. "Numerical simulation of flow around diamond-shaped obstacles at low to moderate Reynolds numbers." American Journal of Applied Mathematics and Statistics 1, no. 1 (2013): 11-20.
DOI: 10.12691/ajams-1-1-3
Google Scholar
[13]
Rashidi, S., M. Bovand, I. Pop, and M. S. Valipour. "Numerical simulation of forced convective heat transfer past a square diamond-shaped porous cylinder." Transport in porous media 102, no. 2 (2014): 207-225.
DOI: 10.1007/s11242-014-0272-0
Google Scholar
[14]
Valipour, Mohammad Sadegh, Saman Rashidi, Masoud Bovand, and Reza Masoodi. "Numerical modeling of flow around and through a porous cylinder with diamond cross section." European Journal of Mechanics-B/Fluids 46 (2014): 74-81.
DOI: 10.1016/j.euromechflu.2013.12.007
Google Scholar
[15]
Vijaybabu, T. R., K. Anirudh, and S. Dhinakaran. "LBM simulation of unsteady flow and heat transfer from a diamond-shaped porous cylinder." International Journal of Heat and Mass Transfer 120 (2018): 267-283.
DOI: 10.1016/j.ijheatmasstransfer.2017.11.010
Google Scholar
[16]
Perkins Jr, H. C., and G. Leppert. "Forced convection heat transfer from a uniformly heated cylinder." (1962): 257-261.
DOI: 10.1115/1.3684359
Google Scholar
[17]
Tritton, David J. "Experiments on the flow past a circular cylinder at low Reynolds numbers." Journal of Fluid Mechanics 6, no. 4 (1959): 547-567.
DOI: 10.1017/s0022112059000829
Google Scholar
[18]
Collis, D. C., and M. J. Williams. "Two-dimensional convection from heated wires at low Reynolds numbers." Journal of Fluid Mechanics 6, no. 3 (1959): 357-384.
DOI: 10.1017/s0022112059000696
Google Scholar
[19]
Dennis, S. C. R., and Gau-Zu Chang. "Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100." Journal of Fluid Mechanics 42, no. 3 (1970): 471-489.
DOI: 10.1017/s0022112070001428
Google Scholar
[20]
Fornberg, Bengt. "A numerical study of steady viscous flow past a circular cylinder." Journal of Fluid Mechanics 98, no. 4 (1980): 819-855.
DOI: 10.1017/s0022112080000419
Google Scholar
[21]
Sheard, Gregory J., Kerry Hourigan, and Mark Christopher Thompson. "Computations of the drag coefficients for low-Reynolds-number flow past rings." Journal of Fluid Mechanics 526 (2005): 257.
DOI: 10.1017/s0022112004002836
Google Scholar
[22]
Kalita, Jiten C., and Rajendra K. Ray. "A transformation-free HOC scheme for incompressible viscous flows past an impulsively started circular cylinder." Journal of computational physics 228, no. 14 (2009): 5207-5236.
DOI: 10.1016/j.jcp.2009.04.016
Google Scholar
[23]
Okajima, Atsushi. "Strouhal numbers of rectangular cylinders." Journal of Fluid mechanics 123 (1982): 379-398.
DOI: 10.1017/s0022112082003115
Google Scholar
[24]
Breuer, Michael, J. Bernsdorf, Thomas Zeiser, and Franz Durst. "Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume." International journal of heat and fluid flow 21, no. 2 (2000): 186-196.
DOI: 10.1016/s0142-727x(99)00081-8
Google Scholar
[25]
Sharma, Atul, and V. Eswaran. "Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime." Numerical Heat Transfer, Part A: Applications 45, no. 3 (2004): 247-269.
DOI: 10.1080/10407780490278562
Google Scholar
[26]
Dhiman, A. K., R. P. Chhabra, and V. Eswaran. "Flow and heat transfer across a confined square cylinder in the steady flow regime: effect of Peclet number." International Journal of Heat and Mass Transfer 48, no. 21-22 (2005): 4598-4614.
DOI: 10.1016/j.ijheatmasstransfer.2005.04.033
Google Scholar
[27]
Sahu, Akhilesh K., R. P. Chhabra, and V. Eswaran. "Effects of Reynolds and Prandtl numbers on heat transfer from a square cylinder in the unsteady flow regime." International Journal of Heat and Mass Transfer 52, no. 3-4 (2009): 839-850.
DOI: 10.1016/j.ijheatmasstransfer.2008.07.032
Google Scholar
[28]
Yoon, Dong-Hyeog, Kyung-Soo Yang, and Choon-Bum Choi. "Flow past a square cylinder with an angle of incidence." Physics of fluids 22, no. 4 (2010): 043603.
DOI: 10.1063/1.3388857
Google Scholar
[29]
Dhiman, A. K., R. P. Chhabra, A. Sharma, and V. Eswaran. "Effects of Reynolds and Prandtl numbers on heat transfer across a square cylinder in the steady flow regime." Numerical Heat Transfer, Part A: Applications 49, no. 7 (2006): 717-731.
DOI: 10.1080/10407780500283325
Google Scholar
[30]
Khan, Ilyas, Abid A. Memon, M. Asif Memon, Kaleemullah Bhatti, Gul M. Shaikh, Dumitru Baleanu, and Ziyad A. Alhussain. "Finite Element Least Square Technique for Newtonian Fluid Flow through a Semicircular Cylinder of Recirculating Region via COMSOL Multiphysics." Journal of Mathematics 2020 (2020).
DOI: 10.1155/2020/8869308
Google Scholar
[31]
Memon, Abid A., Hammad Alotaibi, M. Asif Memon, Kaleemullah Bhatti, Gul M. Shaikh, Ilyas Khan, and A. A. Mousa. "Finite Element Analysis of Fluid Flow through the Screen Embedded between Parallel Plates with High Reynolds Numbers." Journal of Function Spaces 2021 (2021).
DOI: 10.1155/2021/6695733
Google Scholar
[32]
Memon, Abid Ali, Hisamuddin Shaikh, and Asif Ali Memon. "Finite Element's Analysis of Fluid Flow through the Rectangular Channel with Inclined Screens settled at Angles." In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp.1-5. IEEE, 2019.
DOI: 10.1109/icomet.2019.8673436
Google Scholar
[33]
Memon, Abid Ali, Muhammad Asif Memon, Kaleemullah Bhatti, and Gul Muhammad Shaikh. "Finite Element Simulation of Newtonian and Non-Newtonian Fluid through the Parallel Plates Affixed with Single Screen." European Journal of Pure and Applied Mathematics 13, no. 1 (2020): 69-83.
DOI: 10.29020/nybg.ejpam.v1i1.3586
Google Scholar
[34]
Memon, Abid Ali. "Analysis of Optimum Velocity and Pressure of the Air Flow through the Screens with the Help of Resistance Coefficient." Sukkur IBA Journal of Computing and Mathematical Sciences 3, no. 1 (2019): 51-57.
DOI: 10.30537/sjcms.v3i1.355
Google Scholar
[35]
Memon, Abid Ali, Hisam-uddin Shaikh, M. A. Soomro, A. G. Shaikh, and A. H. Shaikh. "Modeling and simulation of newtonian fluid flow through two-dimensional backward-facing step channel with finite element's technique." Indian Journal of science and technology 12, no. 32 (2019): 1-6.
DOI: 10.17485/ijst/2019/v12i32/146075
Google Scholar
[36]
Elder, J. W. "Steady flow through non-uniform gauzes of arbitrary shape." Journal of Fluid Mechanics 5, no. 3 (1959): 355-368.
DOI: 10.1017/s0022112059000258
Google Scholar
[37]
Hauke, G., and T. J. R. Hughes. "A unified approach to compressible and incompressible flows." Computer Methods in Applied Mechanics and Engineering 113, no. 3-4 (1994): 389-395.
DOI: 10.1016/0045-7825(94)90055-8
Google Scholar
[38]
Rehman, Khalil Ur, Wasfi Shatanawi, Mostafa Zahri, El-Sayed M. Sherif, Harri Junaedi, and Yu-Pei Lv. "Thermal analysis on uniformly heated diamond obstruction in convective liquid suspension." Case Studies in Thermal Engineering 26 (2021): 101062.
DOI: 10.1016/j.csite.2021.101062
Google Scholar