On the Analysis of Power Law Fluid over a Diamond Shaped Cylindrical Surface with Screen Boundary Conditions at High Reynolds Number

Article Preview

Abstract:

This study analyses physical aspects of power-law fluid flow over a diamond shaped cylinder under the impact of a movable screen fixed in the middle of a channel keeping an aspect ratio as 0.5 with height of the channel. The perforated plate is a screen at the middle especially settled at orientation of π/6, π/4 or π/3 degrees. The Reynolds number (Re) has been kept in the range of 1000-10,000 with power-law index in the range 0.8-1.2. For the corresponding two-dimensional problem, the governing momentum equations coupled with energy equation have been solved numerically using non-isothermal laminar fluid flow interface in the software COMSOL Multiphysics 5.4. The dimensionless velocity magnitude and the non-dimensional temperature on the diamond shaped cylinder along the vertical non-dimensional length are expressed via fixing any two parameters from (Re), angle of screen θ and power-law index. The heat transfer coefficient, effective thermal conductivity and the Nusselt number are also expressed besides the dimonsionless length of the surface of the chosen cylinder. In conclusion, we will be going to suggest points to increase the dynamics and thermal variables with the use of selected parameters Re, θ, and power law index n.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-175

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sochinskii, Arkadii, Damien Colombet, M. Medrano Muñoz, Frédéric Ayela, and Nicolas Luchier. "Flow and heat transfer around a diamond-shaped cylinder at moderate Reynolds number." International Journal of Heat and Mass Transfer 142 (2019): 118435.

DOI: 10.1016/j.ijheatmasstransfer.2019.118435

Google Scholar

[2] B. P. Abbott, R. Abbott, T. D. Abbott et al., "Observation of Gravitational Waves from a Binary Black Hole Merger," Physical Review Letters, vol. 116, no. 6, Article ID 061102, 2016.

DOI: 10.1142/9789814699662_0011

Google Scholar

[3] Chyu, M. K., Y. C. Hsing, and V. Natarajan. "Convective heat transfer of cubic fin arrays in a narrow channel." In Turbo Expo: Power for Land, Sea, and Air, vol. 78750, p. V004T09A020. American Society of Mechanical Engineers, 1996.

DOI: 10.1115/96-gt-201

Google Scholar

[4] Tanda, Giovanni. "Heat transfer and pressure drop in a rectangular channel with diamond-shaped elements." International Journal of Heat and Mass Transfer 44, no. 18 (2001): 3529-3541.

DOI: 10.1016/s0017-9310(01)00018-7

Google Scholar

[5] Gamrat, Gabriel, Michel Favre-Marinet, Stéphane Le Person, Roland Baviere, and Frédéric Ayela. "An experimental study and modelling of roughness effects on laminar flow in microchannels." Journal of Fluid Mechanics 594 (2008): 399-423.

DOI: 10.1017/s0022112007009111

Google Scholar

[6] Jeng, Tzer-Ming. "Thermal performance of in-line diamond-shaped pin fins in a rectangular duct." International communications in heat and mass transfer 33, no. 9 (2006): 1139-1146.

DOI: 10.1016/j.icheatmasstransfer.2006.06.001

Google Scholar

[7] Vanapalli, Srinivas, Hermanus JM ter Brake, Henricus V. Jansen, Johannes Faas Burger, Herman J. Holland, T. T. Veenstra, and Michael Curt Elwenspoek. "Pressure drop of laminar gas flows in a microchannel containing various pillar matrices." Journal of micromechanics and microengineering 17, no. 7 (2007): 1381.

DOI: 10.1088/0960-1317/17/7/021

Google Scholar

[8] De Smet, J., P. Gzil, N. Vervoort, H. Verelst, G. V. Baron, and G. Desmet. "Influence of the pillar shape on the band broadening and the separation impedance of perfectly ordered 2-D porous chromatographic media." Analytical chemistry 76, no. 13 (2004): 3716-3726.

DOI: 10.1021/ac049873s

Google Scholar

[9] M. De Pra, W. De Malsche, G. Desmet, P. Schoenmakers, W. Kok, Pillar-structured micro channels for on-chip liquid chromatography: Evaluation of the permeability and separation performance, J. Sep. Sci. 30 (2004) 1453.

DOI: 10.1002/jssc.200600468

Google Scholar

[10] Bejan, Adrian, and Allan D. Kraus, eds. Heat transfer handbook. Vol. 1. John Wiley & Sons, 2003.

Google Scholar

[11] Lienhard, John H. "Exterior Shape Factors From Interior Shape Factors." Journal of Heat Transfer 141, no. 6 (2019).

DOI: 10.1115/1.4042912

Google Scholar

[12] Djeddi, Seyed Reza, Ali Masoudi, and Parviz Ghadimi. "Numerical simulation of flow around diamond-shaped obstacles at low to moderate Reynolds numbers." American Journal of Applied Mathematics and Statistics 1, no. 1 (2013): 11-20.

DOI: 10.12691/ajams-1-1-3

Google Scholar

[13] Rashidi, S., M. Bovand, I. Pop, and M. S. Valipour. "Numerical simulation of forced convective heat transfer past a square diamond-shaped porous cylinder." Transport in porous media 102, no. 2 (2014): 207-225.

DOI: 10.1007/s11242-014-0272-0

Google Scholar

[14] Valipour, Mohammad Sadegh, Saman Rashidi, Masoud Bovand, and Reza Masoodi. "Numerical modeling of flow around and through a porous cylinder with diamond cross section." European Journal of Mechanics-B/Fluids 46 (2014): 74-81.

DOI: 10.1016/j.euromechflu.2013.12.007

Google Scholar

[15] Vijaybabu, T. R., K. Anirudh, and S. Dhinakaran. "LBM simulation of unsteady flow and heat transfer from a diamond-shaped porous cylinder." International Journal of Heat and Mass Transfer 120 (2018): 267-283.

DOI: 10.1016/j.ijheatmasstransfer.2017.11.010

Google Scholar

[16] Perkins Jr, H. C., and G. Leppert. "Forced convection heat transfer from a uniformly heated cylinder." (1962): 257-261.

DOI: 10.1115/1.3684359

Google Scholar

[17] Tritton, David J. "Experiments on the flow past a circular cylinder at low Reynolds numbers." Journal of Fluid Mechanics 6, no. 4 (1959): 547-567.

DOI: 10.1017/s0022112059000829

Google Scholar

[18] Collis, D. C., and M. J. Williams. "Two-dimensional convection from heated wires at low Reynolds numbers." Journal of Fluid Mechanics 6, no. 3 (1959): 357-384.

DOI: 10.1017/s0022112059000696

Google Scholar

[19] Dennis, S. C. R., and Gau-Zu Chang. "Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100." Journal of Fluid Mechanics 42, no. 3 (1970): 471-489.

DOI: 10.1017/s0022112070001428

Google Scholar

[20] Fornberg, Bengt. "A numerical study of steady viscous flow past a circular cylinder." Journal of Fluid Mechanics 98, no. 4 (1980): 819-855.

DOI: 10.1017/s0022112080000419

Google Scholar

[21] Sheard, Gregory J., Kerry Hourigan, and Mark Christopher Thompson. "Computations of the drag coefficients for low-Reynolds-number flow past rings." Journal of Fluid Mechanics 526 (2005): 257.

DOI: 10.1017/s0022112004002836

Google Scholar

[22] Kalita, Jiten C., and Rajendra K. Ray. "A transformation-free HOC scheme for incompressible viscous flows past an impulsively started circular cylinder." Journal of computational physics 228, no. 14 (2009): 5207-5236.

DOI: 10.1016/j.jcp.2009.04.016

Google Scholar

[23] Okajima, Atsushi. "Strouhal numbers of rectangular cylinders." Journal of Fluid mechanics 123 (1982): 379-398.

DOI: 10.1017/s0022112082003115

Google Scholar

[24] Breuer, Michael, J. Bernsdorf, Thomas Zeiser, and Franz Durst. "Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume." International journal of heat and fluid flow 21, no. 2 (2000): 186-196.

DOI: 10.1016/s0142-727x(99)00081-8

Google Scholar

[25] Sharma, Atul, and V. Eswaran. "Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime." Numerical Heat Transfer, Part A: Applications 45, no. 3 (2004): 247-269.

DOI: 10.1080/10407780490278562

Google Scholar

[26] Dhiman, A. K., R. P. Chhabra, and V. Eswaran. "Flow and heat transfer across a confined square cylinder in the steady flow regime: effect of Peclet number." International Journal of Heat and Mass Transfer 48, no. 21-22 (2005): 4598-4614.

DOI: 10.1016/j.ijheatmasstransfer.2005.04.033

Google Scholar

[27] Sahu, Akhilesh K., R. P. Chhabra, and V. Eswaran. "Effects of Reynolds and Prandtl numbers on heat transfer from a square cylinder in the unsteady flow regime." International Journal of Heat and Mass Transfer 52, no. 3-4 (2009): 839-850.

DOI: 10.1016/j.ijheatmasstransfer.2008.07.032

Google Scholar

[28] Yoon, Dong-Hyeog, Kyung-Soo Yang, and Choon-Bum Choi. "Flow past a square cylinder with an angle of incidence." Physics of fluids 22, no. 4 (2010): 043603.

DOI: 10.1063/1.3388857

Google Scholar

[29] Dhiman, A. K., R. P. Chhabra, A. Sharma, and V. Eswaran. "Effects of Reynolds and Prandtl numbers on heat transfer across a square cylinder in the steady flow regime." Numerical Heat Transfer, Part A: Applications 49, no. 7 (2006): 717-731.

DOI: 10.1080/10407780500283325

Google Scholar

[30] Khan, Ilyas, Abid A. Memon, M. Asif Memon, Kaleemullah Bhatti, Gul M. Shaikh, Dumitru Baleanu, and Ziyad A. Alhussain. "Finite Element Least Square Technique for Newtonian Fluid Flow through a Semicircular Cylinder of Recirculating Region via COMSOL Multiphysics." Journal of Mathematics 2020 (2020).

DOI: 10.1155/2020/8869308

Google Scholar

[31] Memon, Abid A., Hammad Alotaibi, M. Asif Memon, Kaleemullah Bhatti, Gul M. Shaikh, Ilyas Khan, and A. A. Mousa. "Finite Element Analysis of Fluid Flow through the Screen Embedded between Parallel Plates with High Reynolds Numbers." Journal of Function Spaces 2021 (2021).

DOI: 10.1155/2021/6695733

Google Scholar

[32] Memon, Abid Ali, Hisamuddin Shaikh, and Asif Ali Memon. "Finite Element's Analysis of Fluid Flow through the Rectangular Channel with Inclined Screens settled at Angles." In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp.1-5. IEEE, 2019.

DOI: 10.1109/icomet.2019.8673436

Google Scholar

[33] Memon, Abid Ali, Muhammad Asif Memon, Kaleemullah Bhatti, and Gul Muhammad Shaikh. "Finite Element Simulation of Newtonian and Non-Newtonian Fluid through the Parallel Plates Affixed with Single Screen." European Journal of Pure and Applied Mathematics 13, no. 1 (2020): 69-83.

DOI: 10.29020/nybg.ejpam.v1i1.3586

Google Scholar

[34] Memon, Abid Ali. "Analysis of Optimum Velocity and Pressure of the Air Flow through the Screens with the Help of Resistance Coefficient." Sukkur IBA Journal of Computing and Mathematical Sciences 3, no. 1 (2019): 51-57.

DOI: 10.30537/sjcms.v3i1.355

Google Scholar

[35] Memon, Abid Ali, Hisam-uddin Shaikh, M. A. Soomro, A. G. Shaikh, and A. H. Shaikh. "Modeling and simulation of newtonian fluid flow through two-dimensional backward-facing step channel with finite element's technique." Indian Journal of science and technology 12, no. 32 (2019): 1-6.

DOI: 10.17485/ijst/2019/v12i32/146075

Google Scholar

[36] Elder, J. W. "Steady flow through non-uniform gauzes of arbitrary shape." Journal of Fluid Mechanics 5, no. 3 (1959): 355-368.

DOI: 10.1017/s0022112059000258

Google Scholar

[37] Hauke, G., and T. J. R. Hughes. "A unified approach to compressible and incompressible flows." Computer Methods in Applied Mechanics and Engineering 113, no. 3-4 (1994): 389-395.

DOI: 10.1016/0045-7825(94)90055-8

Google Scholar

[38] Rehman, Khalil Ur, Wasfi Shatanawi, Mostafa Zahri, El-Sayed M. Sherif, Harri Junaedi, and Yu-Pei Lv. "Thermal analysis on uniformly heated diamond obstruction in convective liquid suspension." Case Studies in Thermal Engineering 26 (2021): 101062.

DOI: 10.1016/j.csite.2021.101062

Google Scholar