[1]
M. Gad-El-Hak, The fluid mechanics of microdevices, The Freeman scholar lecture, J Fluid Eng. 121 (1999) 5-33.
DOI: 10.1115/1.2822013
Google Scholar
[2]
W. M. Zhang, G. Meng, X. Wei, A review on slip models for gas microflows, Microfluidics and nanofluidics. 13 (2012) 845-882.
DOI: 10.1007/s10404-012-1012-9
Google Scholar
[3]
H. I. Andersson, Slip flow pass a stretching surface, Acta Mechanica. 182 (2012) 216-226.
Google Scholar
[4]
A. M. Obalalu, O. A. Ajala, A.A. bdulraheem, A. O. Akindele, The influence of variable electrical conductivity on non-Darcian Casson-nanofluid flow with first and second-order slip conditions, Partial Differential Equations in Applied Mathematics. 4 (2021) 100-084.
DOI: 10.1016/j.padiff.2021.100084
Google Scholar
[5]
L. A. Wu, Slip model for rarefied gas flows at arbitrary Knudsen number, Applied Physics Letters. 93 (2008) 253-103
DOI: 10.1063/1.3052923
Google Scholar
[6]
S. Fukui, R. Kaneko, Dynamic analysis of flying head sliders with ultra-thin spacing based on the Boltzmann equation: Comparison with two limiting approximations, JSME international journal. 33 (1990) 76-85.
DOI: 10.1299/jsmec1988.33.76
Google Scholar
[7]
H. Vaidya, K. V. Prasad, I. Tlili, O. D. Makinde, C. Rajashekhar, S. U. Khan, R. Kumar, D. L. Mahendra, Mixed convective nanofluid flow over a non-linearly stretched Rigaplate, Case Studies in Thermal Engineering. 24 (2021) 100-828.
DOI: 10.1016/j.csite.2020.100828
Google Scholar
[8]
J. A. Eastman, S. R. Phillpot, S. U. S. Choi, P. Keblinski, Thermal transport in nanofluids, Environmental Science Pollution Research. 34 (2004) 219-246.
DOI: 10.1146/annurev.matsci.34.052803.090621
Google Scholar
[9]
J. Buongiorno, Convective transport innanofluids, JHeat Transfer. 3 (2006) 240-250.
Google Scholar
[10]
F. A. Chard, J. C. Maxwell, A treatise on electricity and magnetism, Landmark Writings in Western Mathematics. 20 (1873) 1640–1940.
DOI: 10.1016/b978-044450871-3/50125-x
Google Scholar
[11]
A. R. Sajadi, S. S. Sadati, M. Nourimotlagh, O. Pakbaz, D. Ashtiani, F. Kowsari, Experimental study on turbulent convective heat transfer, pressure drop, and thermal performance characterization of ZnO/water nanofluid flow in a circular tube, Therm Sci. 18 (2014) 1315–1326.
DOI: 10.2298/tsci131114022s
Google Scholar
[12]
K.Rafique, H.Alotaibi, T. A.Nofal, M. I.Anwar, M.Misiran, I.Khan, Numerical solutions of micropolar nanofluid over an inclined surface using Keller box analysis, Journal Math. 132 (2020) 1-13.
DOI: 10.1155/2020/6617652
Google Scholar
[13]
M. Malekan, A. Khosravi, X. Zhao, The influence of magnetic field on heat transfer of magnetic nanofluid in a double pipe heat exchanger proposed in a small-scale CAES system, Appl Therm Eng. 146 (2019) 146–159.
DOI: 10.1016/j.applthermaleng.2018.09.117
Google Scholar
[14]
M. A. Medebber, A. Aissa, M. E. A. Slimani, N. Retiel, Numerical study of natural convection in vertical cylindrical annular enclosure filled with cu-water nanofluid under magnetic fields, Defect and Diffusion forum. 392 (2019) 123–137.
DOI: 10.4028/www.scientific.net/ddf.392.123
Google Scholar
[15]
I. S. Oyelakin, S. Mondal, P. Sibanda, Unsteady casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions, Alexandria Eng J. 55 (2016) 1025–1035.
DOI: 10.1016/j.aej.2016.03.003
Google Scholar
[16]
M. H. Abolbashari, N. Freidoonimehr, F. Nazari, M. M. Rashidi, Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface, J Adv Powder Technol. 26 (2015) 42–552.
DOI: 10.1016/j.apt.2015.01.003
Google Scholar
[17]
M.R. Khan, A.S. Al-Johani, A.M. Elsiddieg, T. Saeed, and A.M. Abd Allah, the computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface, International Communications in Heat Mass Transfer. 130 (2022) 105832.
DOI: 10.1016/j.icheatmasstransfer.2021.105832
Google Scholar
[18]
S. Qayyum, T. Hayat, S. A. Shehzad, A. Alsaedi, Effect of a chemical reaction on magnetohydrodynamic (MHD) stagnation point flow of Walters-B nanofluid with Newtonian heat and mass conditions, Nucl Eng Technol. 49 (2017) 1636–1644.
DOI: 10.1016/j.net.2017.07.028
Google Scholar
[19]
F. Shahzad, W. Jamshed, S. U. D. Sathyanarayanan, A. Aissa, P. Madheshwaran, and A. Mourad, Thermal analysis on Darcy‐Forchheimer swirling Casson hybrid nanofluid flow inside parallel plates in parabolic trough solar collector: An application to solar aircraft, International Journal of Energy Research. 45 (2021) 20812-20834.
DOI: 10.1002/er.7140
Google Scholar
[20]
A. O. Akindele, A. W. Ogunsola, A study of non-isothermal permeable flow of nano-fluid in a stretchable rotating disk system, J. Math Comput. Sci. 11 (2021) 1486-1498.
DOI: 10.28919/jmcs/5401
Google Scholar
[21]
P. Shrama, G. Singh, Steady MHD natural convection flow with variable electrical conductivity and heat generation along an isothermal vertical plate, J Appl Sci Eng. 13 (2010) 235–242.
Google Scholar
[22]
N. Kafoussias, E. Williams, the effect of temperature-dependent viscosity on free-forced convective laminar boundary layer flow past a vertical isothermal flat plate, J Acta Mech. 110 (1995) 123–137.
DOI: 10.1007/bf01215420
Google Scholar
[23]
T. Myers, J. Charpin, M. Tshehla, The flow of a variable viscosity fluid between parallel plates with shear heating, Appl Math Model. 30 (2006) 799–815.
DOI: 10.1016/j.apm.2005.05.013
Google Scholar
[24]
S. Bilal, M. Malik, A. Hussain, M. Khan, Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface, Results Phys. 7 (2017) 204–212.
DOI: 10.1016/j.rinp.2016.11.063
Google Scholar
[25]
N. A.Casson, flow equation for pigment-oil suspensions of the printing ink type. Rheol Disperse Syst, 5 (1959) 84-104.
Google Scholar
[26]
A. El-Aziz, A. A. Afify, MHD Casson fluid flow over a stretching sheet with entropy generation analysis and Hall influence, Renewable Energy. 21 (2019) 65-72.
DOI: 10.3390/e21060592
Google Scholar
[27]
S. Nadeem, R. U. Haq, N. S. Akbar, C. Lee, Z. H. Khan, Numerical study of boundary layer flow and heat transfer of Oldroyd-B nanofluid towards a stretching sheet, PLoSOne. 8 (2013) 490-497.
DOI: 10.1371/journal.pone.0069811
Google Scholar
[28]
Obalalu, A., Ahmad, H., Salawu, S., Olayemi, O., Odetunde, C., Ajala, A., Abdulraheem, A. Improvement of mechanical energy using thermal efficiency of hybrid nanofluid on solar aircraft wings: An application of renewable, sustainable energy, Waves Random Complex Media. 4 (2023) 1–30.
DOI: 10.1080/17455030.2023.2184642
Google Scholar
[29]
M. Ramzan, N. Shaheen, J. D. Chung, S. Kadry, Y. M. Chu, F. Howari, Impact of Newtonian heating and Fourier and Fick's laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder, Sci Rep. 11 (2021) 1–19.
DOI: 10.1038/s41598-021-81747-x
Google Scholar
[30]
I. H. Qureshi, M. Nawaz, S. Rana, T. Zubair, Galerkin finite element study on the effects of variable thermal conductivity and variable mass diffusion conductance on heat and mass transfer, CommunTheor-Phys journal. 70 (2018) 049.
DOI: 10.1088/0253-6102/70/1/49
Google Scholar
[31]
J. Gbadeyan, E. Titiloye, A. Adeosun, Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip, Heliyon. 6 (2020) 130-146.
DOI: 10.1016/j.heliyon.2019.e03076
Google Scholar
[32]
A.M. Obalalu, O.A. Ajala, A.O. Akindele, S. Alao, Effect of melting heat transfer on electromagnetohydrodynamic non-newtonian nanofluid flow over a riga plate with chemical reaction and arrhenius activation energy, The European Physical Journal Plus. 136 (2021) 1-16.
DOI: 10.1140/epjp/s13360-021-01869-z
Google Scholar
[33]
M. G. Reddy and K. G. Kumar, Cattaneo-Christov heat flux feature on carbon nanotubes filled with micropolar liquid over a melting surface: a stream line study, International Communications in Heat Mass Transfer. 122 (2021) 105142.
DOI: 10.1016/j.icheatmasstransfer.2021.105142
Google Scholar
[34]
A. M. Obalalu, Heat and mass transfer in an unsteady squeezed Casson fluid flow with novel thermophysical properties: Analytical and numerical solution, Heat Transfer. 50 (2021) 7988-8011.
DOI: 10.1002/htj.22263
Google Scholar
[35]
T. Jamir, H. Konwar, Unsteady Magnetohydrodynamic Slip Flow, Heat and Mass Transfer over a Permeable Stretching Cylinder with Soret and Dufour Effects in Porous Medium, Defect and Diffusion Forum. 424 (2023)43–54.
DOI: 10.4028/p-jwdu0s
Google Scholar
[36]
D. J. Samuel and A. Oladoja, Natural Convection Flow of Radiative Casson Fluid Past a Stretching Cylindrical Surface in a Porous Medium with Applied Magnetic Field Joule Heating, Defect and Diffusion Forum. 424 (2023) 3–17.
DOI: 10.4028/p-6mf230
Google Scholar
[37]
T. A. Yusuf, J. Ukaegbu, F. Amao, Cattaneo-Christov Model on Three-Dimensional Flow, Heat, and Mass Transfer of Prandtl Fluid over a Riga Plate, Defect and Diffusion Forum. 423 (2023) 89–103.
DOI: 10.4028/p-1udy5h
Google Scholar
[38]
H. Ozawa, A. Ohmura, R. D. Lorenz, and T. Pujol, The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle, Reviews of Geophysics. 41 (2003).
DOI: 10.1029/2002rg000113
Google Scholar
[39]
K. M. Mishra and O. Singh. Solar preheat with significant Thermodynamics Parameter Scrutiny of Energetic, Economic and Environmental Analysis in Tri-generation System. Journal. Year; 2178(1): 012038.
DOI: 10.1088/1742-6596/2178/1/012038
Google Scholar
[40]
A.M. Obalalu, F.A. Wahaab, and L.L. Adebayo, Heat transfer in an unsteady vertical porous channel with injection/suction in the presence of heat generation, Journal of Taibah Universityfor Science. 14 (2020) 541-548.
DOI: 10.1080/16583655.2020.1748844
Google Scholar
[41]
M. M. Rahman, M. Rahman, M. Samad, M. Alam, Heat transfer in a micropolar fluid along a non-linear stretching sheet with a temperature-dependent viscosity and variable surface temperature, Int J Thermophys. 30 (2009) 16-49.
DOI: 10.1007/s10765-009-0656-5
Google Scholar
[42]
W. Ibrahim, D. Gamachu, Nonlinear convection flow of Williamson nanofluid past a radially stretching surface, AIP Adv. 9 (2019) 015-026.
DOI: 10.1063/1.5113688
Google Scholar
[43]
I. Mustafa, Z. Abbas, A. Arif, T. Javed, A. Ghaffari, Stability analysis for multiple solutions of boundary layerflow towards a shrinking sheet: Analytical solution by using least square method, Physica A. 540 (2020) 123-128.
DOI: 10.1016/j.physa.2019.123028
Google Scholar
[44]
T. Javed, I. Mustafa, Slip effects on a mixed convection flow of a third-grade fluid near the orthogonal stagnation point on a vertical surface, J Appl Mech Techn Phys. 57(2016) 527–536.
DOI: 10.1134/s0021894416030172
Google Scholar
[45]
W. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int JHeat. 53 (2010) 2477–2483.
DOI: 10.1016/j.ijheatmasstransfer.2010.01.032
Google Scholar
[46]
O. D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, Int J Therm Sci. 50 (2011) 1326–1332.
DOI: 10.1016/j.ijthermalsci.2011.02.019
Google Scholar