Important of Slip Effects in Non-Newtonian Nanofluid Flow with Heat Generation for Enhanced Heat Transfer Devices

Article Preview

Abstract:

In various fields such as engineering, nanotechnology, and biomedical sciences, the study of non-Newtonian nanofluid flow with heat generation is becoming increasingly important. However, it is challenging to accurately model such flows due to their complex behavior and slip effects at the fluid-solid interface. This research investigates the impact of first and second-order slip conditions on the flow and heat transfer properties of a non-Newtonian nanofluid using a power law model to describe the fluid's non-Newtonian behavior and numerical methods to solve the resulting equations. To determine the influence of various parameters such as slip parameters, Brinkman number, power law index, and Eckert number on the velocity, temperature, and concentration profiles, which this study examines. The study shows that slip parameters significantly determine the flow and heat transfer properties of non-Newtonian nanofluids, the study also reveals that slip parameters are a crucial factor in understanding the flow and heat transfer characteristics of nanofluids, with the second-order slip condition having a greater impact on velocity and temperature profiles than the first-order slip condition. These findings are valuable for developing and optimizing heat transfer devices that involve non-Newtonian nanofluids with heat generation, which is essential for technological advancements in today's industry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-162

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Gad-El-Hak, The fluid mechanics of microdevices, The Freeman scholar lecture, J Fluid Eng. 121 (1999) 5-33.

DOI: 10.1115/1.2822013

Google Scholar

[2] W. M. Zhang, G. Meng, X. Wei, A review on slip models for gas microflows, Microfluidics and nanofluidics. 13 (2012) 845-882.

DOI: 10.1007/s10404-012-1012-9

Google Scholar

[3] H. I. Andersson, Slip flow pass a stretching surface, Acta Mechanica.  182 (2012) 216-226.

Google Scholar

[4] A. M. Obalalu, O. A. Ajala, A.A. bdulraheem, A. O. Akindele, The influence of variable electrical conductivity on non-Darcian Casson-nanofluid flow with first and second-order slip conditions, Partial Differential Equations in Applied Mathematics. 4 (2021) 100-084.

DOI: 10.1016/j.padiff.2021.100084

Google Scholar

[5] L. A. Wu, Slip model for rarefied gas flows at arbitrary Knudsen number, Applied Physics Letters. 93 (2008) 253-103

DOI: 10.1063/1.3052923

Google Scholar

[6] S. Fukui, R. Kaneko, Dynamic analysis of flying head sliders with ultra-thin spacing based on the Boltzmann equation: Comparison with two limiting approximations, JSME international journal. 33 (1990) 76-85.

DOI: 10.1299/jsmec1988.33.76

Google Scholar

[7] H. Vaidya, K. V. Prasad, I. Tlili, O. D. Makinde, C. Rajashekhar, S. U. Khan, R. Kumar, D. L. Mahendra, Mixed convective nanofluid flow over a non-linearly stretched Rigaplate, Case Studies in Thermal Engineering. 24 (2021) 100-828.

DOI: 10.1016/j.csite.2020.100828

Google Scholar

[8] J. A. Eastman, S. R. Phillpot, S. U. S. Choi, P. Keblinski, Thermal transport in nanofluids, Environmental Science Pollution Research. 34 (2004) 219-246.

DOI: 10.1146/annurev.matsci.34.052803.090621

Google Scholar

[9] J. Buongiorno, Convective transport innanofluids, JHeat Transfer. 3 (2006) 240-250.

Google Scholar

[10] F. A. Chard, J. C. Maxwell, A treatise on electricity and magnetism, Landmark Writings in Western Mathematics. 20 (1873) 1640–1940.

DOI: 10.1016/b978-044450871-3/50125-x

Google Scholar

[11] A. R. Sajadi, S. S. Sadati, M. Nourimotlagh, O. Pakbaz, D. Ashtiani, F. Kowsari, Experimental study on turbulent convective heat transfer, pressure drop, and thermal performance characterization of ZnO/water nanofluid flow in a circular tube, Therm Sci. 18 (2014) 1315–1326.

DOI: 10.2298/tsci131114022s

Google Scholar

[12] K.Rafique, H.Alotaibi, T. A.Nofal, M. I.Anwar, M.Misiran, I.Khan, Numerical solutions of micropolar nanofluid over an inclined surface using Keller box analysis, Journal Math. 132 (2020) 1-13.

DOI: 10.1155/2020/6617652

Google Scholar

[13] M. Malekan, A. Khosravi, X. Zhao, The influence of magnetic field on heat transfer of magnetic nanofluid in a double pipe heat exchanger proposed in a small-scale CAES system, Appl Therm Eng. 146 (2019) 146–159.

DOI: 10.1016/j.applthermaleng.2018.09.117

Google Scholar

[14] M. A. Medebber, A. Aissa, M. E. A. Slimani, N. Retiel, Numerical study of natural convection in vertical cylindrical annular enclosure filled with cu-water nanofluid under magnetic fields, Defect and Diffusion forum. 392 (2019) 123–137.

DOI: 10.4028/www.scientific.net/ddf.392.123

Google Scholar

[15] I. S. Oyelakin, S. Mondal, P. Sibanda, Unsteady casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions, Alexandria Eng J. 55 (2016) 1025–1035.

DOI: 10.1016/j.aej.2016.03.003

Google Scholar

[16] M. H. Abolbashari, N. Freidoonimehr, F. Nazari, M. M. Rashidi, Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface, J Adv Powder Technol. 26 (2015) 42–552.

DOI: 10.1016/j.apt.2015.01.003

Google Scholar

[17] M.R. Khan, A.S. Al-Johani, A.M. Elsiddieg, T. Saeed, and A.M. Abd Allah, the computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface, International Communications in Heat Mass Transfer. 130 (2022) 105832.

DOI: 10.1016/j.icheatmasstransfer.2021.105832

Google Scholar

[18] S. Qayyum, T. Hayat, S. A. Shehzad, A. Alsaedi, Effect of a chemical reaction on magnetohydrodynamic (MHD) stagnation point flow of Walters-B nanofluid with Newtonian heat and mass conditions, Nucl Eng Technol. 49 (2017) 1636–1644.

DOI: 10.1016/j.net.2017.07.028

Google Scholar

[19] F. Shahzad, W. Jamshed, S. U. D. Sathyanarayanan, A. Aissa, P. Madheshwaran, and A. Mourad, Thermal analysis on Darcy‐Forchheimer swirling Casson hybrid nanofluid flow inside parallel plates in parabolic trough solar collector: An application to solar aircraft, International Journal of Energy Research. 45 (2021) 20812-20834.

DOI: 10.1002/er.7140

Google Scholar

[20] A. O. Akindele, A. W. Ogunsola, A study of non-isothermal permeable flow of nano-fluid in a stretchable rotating disk system, J. Math Comput. Sci. 11 (2021) 1486-1498.

DOI: 10.28919/jmcs/5401

Google Scholar

[21] P. Shrama, G. Singh, Steady MHD natural convection flow with variable electrical conductivity and heat generation along an isothermal vertical plate, J Appl Sci Eng. 13 (2010) 235–242.

Google Scholar

[22] N. Kafoussias, E. Williams, the effect of temperature-dependent viscosity on free-forced convective laminar boundary layer flow past a vertical isothermal flat plate, J Acta Mech. 110 (1995) 123–137.

DOI: 10.1007/bf01215420

Google Scholar

[23] T. Myers, J. Charpin, M. Tshehla, The flow of a variable viscosity fluid between parallel plates with shear heating, Appl Math Model. 30 (2006) 799–815.

DOI: 10.1016/j.apm.2005.05.013

Google Scholar

[24] S. Bilal, M. Malik, A. Hussain, M. Khan, Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface, Results Phys. 7 (2017) 204–212.

DOI: 10.1016/j.rinp.2016.11.063

Google Scholar

[25] N. A.Casson, flow equation for pigment-oil suspensions of the printing ink type. Rheol Disperse Syst, 5 (1959) 84-104.

Google Scholar

[26] A. El-Aziz, A. A. Afify, MHD Casson fluid flow over a stretching sheet with entropy generation analysis and Hall influence, Renewable Energy. 21 (2019) 65-72.

DOI: 10.3390/e21060592

Google Scholar

[27] S. Nadeem, R. U. Haq, N. S. Akbar, C. Lee, Z. H. Khan, Numerical study of boundary layer flow and heat transfer of Oldroyd-B nanofluid towards a stretching sheet, PLoSOne. 8 (2013) 490-497.

DOI: 10.1371/journal.pone.0069811

Google Scholar

[28] Obalalu, A., Ahmad, H., Salawu, S., Olayemi, O., Odetunde, C., Ajala, A., Abdulraheem, A. Improvement of mechanical energy using thermal efficiency of hybrid nanofluid on solar aircraft wings: An application of renewable, sustainable energy, Waves Random Complex Media. 4 (2023) 1–30.

DOI: 10.1080/17455030.2023.2184642

Google Scholar

[29] M. Ramzan, N. Shaheen, J. D. Chung, S. Kadry, Y. M. Chu, F. Howari, Impact of Newtonian heating and Fourier and Fick's laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder, Sci Rep. 11 (2021) 1–19.

DOI: 10.1038/s41598-021-81747-x

Google Scholar

[30] I. H. Qureshi, M. Nawaz, S. Rana, T. Zubair, Galerkin finite element study on the effects of variable thermal conductivity and variable mass diffusion conductance on heat and mass transfer, CommunTheor-Phys journal. 70 (2018) 049.

DOI: 10.1088/0253-6102/70/1/49

Google Scholar

[31] J. Gbadeyan, E. Titiloye, A. Adeosun, Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip, Heliyon. 6 (2020) 130-146.

DOI: 10.1016/j.heliyon.2019.e03076

Google Scholar

[32] A.M. Obalalu, O.A. Ajala, A.O. Akindele, S. Alao, Effect of melting heat transfer on electromagnetohydrodynamic non-newtonian nanofluid flow over a riga plate with chemical reaction and arrhenius activation energy, The European Physical Journal Plus. 136 (2021) 1-16.

DOI: 10.1140/epjp/s13360-021-01869-z

Google Scholar

[33] M. G. Reddy and K. G. Kumar, Cattaneo-Christov heat flux feature on carbon nanotubes filled with micropolar liquid over a melting surface: a stream line study, International Communications in Heat Mass Transfer. 122 (2021) 105142.

DOI: 10.1016/j.icheatmasstransfer.2021.105142

Google Scholar

[34] A. M. Obalalu, Heat and mass transfer in an unsteady squeezed Casson fluid flow with novel thermophysical properties: Analytical and numerical solution, Heat Transfer. 50 (2021) 7988-8011.

DOI: 10.1002/htj.22263

Google Scholar

[35] T. Jamir, H. Konwar, Unsteady Magnetohydrodynamic Slip Flow, Heat and Mass Transfer over a Permeable Stretching Cylinder with Soret and Dufour Effects in Porous Medium, Defect and Diffusion Forum. 424 (2023)43–54.

DOI: 10.4028/p-jwdu0s

Google Scholar

[36] D. J. Samuel and A. Oladoja, Natural Convection Flow of Radiative Casson Fluid Past a Stretching Cylindrical Surface in a Porous Medium with Applied Magnetic Field Joule Heating, Defect and Diffusion Forum. 424 (2023) 3–17.

DOI: 10.4028/p-6mf230

Google Scholar

[37] T. A. Yusuf, J. Ukaegbu, F. Amao, Cattaneo-Christov Model on Three-Dimensional Flow, Heat, and Mass Transfer of Prandtl Fluid over a Riga Plate, Defect and Diffusion Forum. 423 (2023) 89–103.

DOI: 10.4028/p-1udy5h

Google Scholar

[38] H. Ozawa, A. Ohmura, R. D. Lorenz, and T. Pujol, The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle, Reviews of Geophysics. 41 (2003).

DOI: 10.1029/2002rg000113

Google Scholar

[39] K. M. Mishra and O. Singh. Solar preheat with significant Thermodynamics Parameter Scrutiny of Energetic, Economic and Environmental Analysis in Tri-generation System. Journal. Year; 2178(1): 012038.

DOI: 10.1088/1742-6596/2178/1/012038

Google Scholar

[40] A.M. Obalalu, F.A. Wahaab, and L.L. Adebayo, Heat transfer in an unsteady vertical porous channel with injection/suction in the presence of heat generation, Journal of Taibah Universityfor Science. 14 (2020) 541-548.

DOI: 10.1080/16583655.2020.1748844

Google Scholar

[41] M. M. Rahman, M. Rahman, M. Samad, M. Alam, Heat transfer in a micropolar fluid along a non-linear stretching sheet with a temperature-dependent viscosity and variable surface temperature, Int J Thermophys. 30 (2009) 16-49.

DOI: 10.1007/s10765-009-0656-5

Google Scholar

[42] W. Ibrahim, D. Gamachu, Nonlinear convection flow of Williamson nanofluid past a radially stretching surface, AIP Adv. 9 (2019) 015-026.

DOI: 10.1063/1.5113688

Google Scholar

[43] I. Mustafa, Z. Abbas, A. Arif, T. Javed, A. Ghaffari, Stability analysis for multiple solutions of boundary layerflow towards a shrinking sheet: Analytical solution by using least square method, Physica A. 540 (2020) 123-128.

DOI: 10.1016/j.physa.2019.123028

Google Scholar

[44] T. Javed, I. Mustafa, Slip effects on a mixed convection flow of a third-grade fluid near the orthogonal stagnation point on a vertical surface, J Appl Mech Techn Phys. 57(2016) 527–536.

DOI: 10.1134/s0021894416030172

Google Scholar

[45] W. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int JHeat. 53 (2010) 2477–2483.

DOI: 10.1016/j.ijheatmasstransfer.2010.01.032

Google Scholar

[46] O. D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, Int J Therm Sci. 50 (2011) 1326–1332.

DOI: 10.1016/j.ijthermalsci.2011.02.019

Google Scholar