[1]
S. Kakac, Y. Yener, A. Pramuanjaroenkij, Convective heat transfer. Vol. 2. Boca Raton: CRC press; 1995.
Google Scholar
[2]
S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL (United States); 1995.
Google Scholar
[3]
Q. Xiong, A. Hajjar, B. Alshuraiaan, M. Izadi, S. Altnji, S.A. Shehzad, State-of-the-art review of nanofluids in solar collectors: A review based on the type of the dispersed nanoparticles. Journal of Cleaner Production. 2021;310:127528.
DOI: 10.1016/j.jclepro.2021.127528
Google Scholar
[4]
M.S. Khan, T. Dil, Heat transfer enhancement through automobile radiator. AIP advances. 2017; 7(4):045018.
Google Scholar
[5]
J. Buongiorno, et al, Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps. Nuclear Technology. 2008;162(1):80-91.
DOI: 10.13182/nt08-a3934
Google Scholar
[6]
J. Kananathan, et al, Nanofluid as coolant for grinding process: An overview. IOP Conf. Ser.: Mater. Sci. Eng. 2018;342:012078.
DOI: 10.1088/1757-899x/342/1/012078
Google Scholar
[7]
M. Sheikhpour, et al, Role of nanofluids in drug delivery and biomedical technology: Methods and applications. Nanotechnology, Science and Applications. 2020:47-59.
DOI: 10.2147/nsa.s260374
Google Scholar
[8]
S.H. Elhag, A.A. Memon, M.A. Memon, K. Bhatti, K. Jacob, S. Alzahrani, J. Seidu, Analysis of forced convection with hybrid Cu-Al2O3 nanofluids injected in a three-dimensional rectangular channel containing three perpendicular rotating blocks with turbulent modeling. J. Nanomater. 2022. 2022;2446972.
DOI: 10.1155/2022/2446972
Google Scholar
[9]
H.B. Lanjwani, K. Malik, M.S. Chandio, M.M. Shaikh, Stability Analysis of Boundary Layer Flow and Heat Transfer of Fe2O3 and Fe-Water Base Nanofluid over a Stretching/Shrinking Sheet with Radiation Effect. Engineering, Technology & Applied Science Research. 2022;12(1).
DOI: 10.48084/etasr.4649
Google Scholar
[10]
H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow. 2008;29:1326–1336.
DOI: 10.1016/j.ijheatfluidflow.2008.04.009
Google Scholar
[11]
F. Soltani, D. Toghraie, A. Karimipour, Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions, Powder Technol. 371 (2020) 37–44.
DOI: 10.1016/j.powtec.2020.05.059
Google Scholar
[12]
I. Waini, A. Ishak, I. Pop, Dufour and Soret effects on Al2O3-water nanofluid flow over a moving thin needle: Tiwari and Das model. Int. J. Numer. Methods Heat Fluid Flow. 2021, 31(3), pp.766-782.
DOI: 10.1108/hff-03-2020-0177
Google Scholar
[13]
U. Arif, M.A. Memon, R.S. Saif, A.S. El-Shafay, M. Nawaz, T. Muhammad, Triple diffusion with heat transfer under different effects on magnetized hyperbolic tangent nanofluid flow. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. (2022)
DOI: 10.1177/09544089221079139
Google Scholar
[14]
J. Buongiorno, Convective transport in nanofluids. Journal of heat transfer. 2006;128(3):240-250.
DOI: 10.1115/1.2150834
Google Scholar
[15]
R. K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer. 2007; 50(9-10):2002-2018.
DOI: 10.1016/j.ijheatmasstransfer.2006.09.034
Google Scholar
[16]
S. T. Mohyud-Din, et al, A study of heat and mass transfer on magnetohydrodynamics (MHD) flow of nanoparticles. Propulsion and Power Research. 2018;7(1):72-77.
DOI: 10.1016/j.jppr.2018.02.001
Google Scholar
[17]
A. Ishak, R. Nazar, I. Pop, Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder. Energy Conversion and Management. 2008;49(11):3265-3269.
DOI: 10.1016/j.enconman.2007.11.013
Google Scholar
[18]
G.S. Seth, R.N. Jana, M.K. Maiti, Unsteady hydromagnetic Couette flow in a rotating system, Int. J. Eng. Sci. 20 (9) (1982) 989–999.
DOI: 10.1016/0020-7225(82)90034-9
Google Scholar
[19]
N. A. Shah, N. Ahmed, T. Elnaqeeb, M.M. Rashidi, Magnetohydrodynamic free convection flows with thermal memory over a moving vertical plate in porous medium, J. Appl. Comput. Mech. 5 (1) (2019) 150–161.
Google Scholar
[20]
M. Azam, A. Shakoor, H.F. Rasool, M. Khan, Numerical simulation for solar energy aspects on unsteady convective flow of MHD Cross nanofluid: a revised approach, Int. J. Heat Mass Tran. 131 (2019) 495–505.
DOI: 10.1016/j.ijheatmasstransfer.2018.11.022
Google Scholar
[21]
N. Casson, A flow equation for pigment oil suspensions of the printing ink type. In: Rheology of disperse systems. Mill CC (Ed.) Pergamon Press, Oxford 22 (1959), 84–102.
Google Scholar
[22]
K. A. Abro, H.S. Shaikh, I. Khan, A mathematical study of magnetohydrodynamic Casson fluid via special functions with heat and mass transfer embedded in a porous plate. arXiv preprint arXiv:1706.03829. 2017.
Google Scholar
[23]
M. Y. Malik, M. Naseer, S. Nadeem, A. Rehman, The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder, Applied Nanoscience, (2013), doi 10.1007/s13204-013- 0267-0.
DOI: 10.1007/s13204-013-0267-0
Google Scholar
[24]
S. Mukhopadhyay, et al, Casson fluid flow over an unsteady stretching surface. Ain Shams Engineering Journal. 2013;4(4):933-938.
DOI: 10.1016/j.asej.2013.04.004
Google Scholar
[25]
J. Venkatesan, D.S. Sankar, K. Hemalatha, Y. Yatim, Mathematical analysis of Casson fluid model for blood rheology in stenosed narrow arteries, Journal of Applied Mathematics 44 (2013), 1–11.
DOI: 10.1155/2013/583809
Google Scholar
[26]
A. S. Oke, W. N. Mutuku, M. Kimathi, I. L. Animasaun, Insight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force. Nonlinear Engineering. 2020;9(1):398-411.
DOI: 10.1515/nleng-2020-0025
Google Scholar
[27]
M. Nakamura, T. Sawada, Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis. 1988;137-143.
DOI: 10.1115/1.3108418
Google Scholar
[28]
E. Hafidzuddin, R. Nazar, N. Arifin, et al, Boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity. J Appl Fluid Mech. 2016;9:2025-2036.
DOI: 10.18869/acadpub.jafm.68.235.24834
Google Scholar