Radiative MHD Boundary Layer Flow and Heat Transfer Characteristics of Fe-Casson Base Nanofluid over Stretching/Shrinking Surface

Article Preview

Abstract:

In this paper, there is considered MHD boundary layer flow and heat transfer characteristics of Fe-Casson base nanofluid over an exponentially stretching/shrinking surface along the heat source/sink and Newtonian heating effects. In this regard, to develop the system of the governing equations, the one phase model named as Tiwari and Das model is considered with iron nanoparticles. The non-linear governing PDEs are first changed into the system of ODEs using suitable similarity transformations. Later on, the equations are solved numerically by using bvp4c in Matlab software. Effects of certain physical parameters on skin friction coefficient and the local Nusselt number are illustrated graphically. Moreover, the velocity and temperature profiles are examined to observe the influence of various physical parameters such as, Casson, magnetic, suction, radiation, Newtonian heating, heat source/sink and the nanoparticles volume fractions. It is seen that an increase in Casson, magnetic, suction and the nanoparticle volume fractions decrease the velocity profiles for both shrinking and shrinking cases of surface. The temperature profile recedes due to augmentation of Prandlt number and the suction parameter for both stretching/shrinking case while increases with increase in Magnetic, radiation and nanoparticles volume fractions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-145

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Kakac, Y. Yener, A. Pramuanjaroenkij, Convective heat transfer. Vol. 2. Boca Raton: CRC press; 1995.

Google Scholar

[2] S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL (United States); 1995.

Google Scholar

[3] Q. Xiong, A. Hajjar, B. Alshuraiaan, M. Izadi, S. Altnji, S.A. Shehzad, State-of-the-art review of nanofluids in solar collectors: A review based on the type of the dispersed nanoparticles. Journal of Cleaner Production. 2021;310:127528.

DOI: 10.1016/j.jclepro.2021.127528

Google Scholar

[4] M.S. Khan, T. Dil, Heat transfer enhancement through automobile radiator. AIP advances. 2017; 7(4):045018.

Google Scholar

[5] J. Buongiorno, et al, Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps. Nuclear Technology. 2008;162(1):80-91.

DOI: 10.13182/nt08-a3934

Google Scholar

[6] J. Kananathan, et al, Nanofluid as coolant for grinding process: An overview. IOP Conf. Ser.: Mater. Sci. Eng. 2018;342:012078.

DOI: 10.1088/1757-899x/342/1/012078

Google Scholar

[7] M. Sheikhpour, et al, Role of nanofluids in drug delivery and biomedical technology: Methods and applications. Nanotechnology, Science and Applications. 2020:47-59.

DOI: 10.2147/nsa.s260374

Google Scholar

[8] S.H. Elhag, A.A. Memon, M.A. Memon, K. Bhatti, K. Jacob, S. Alzahrani, J. Seidu, Analysis of forced convection with hybrid Cu-Al2O3 nanofluids injected in a three-dimensional rectangular channel containing three perpendicular rotating blocks with turbulent modeling. J. Nanomater. 2022. 2022;2446972.

DOI: 10.1155/2022/2446972

Google Scholar

[9] H.B. Lanjwani, K. Malik, M.S. Chandio, M.M. Shaikh, Stability Analysis of Boundary Layer Flow and Heat Transfer of Fe2O3 and Fe-Water Base Nanofluid over a Stretching/Shrinking Sheet with Radiation Effect. Engineering, Technology & Applied Science Research. 2022;12(1).

DOI: 10.48084/etasr.4649

Google Scholar

[10] H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow. 2008;29:1326–1336.

DOI: 10.1016/j.ijheatfluidflow.2008.04.009

Google Scholar

[11] F. Soltani, D. Toghraie, A. Karimipour, Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions, Powder Technol. 371 (2020) 37–44.

DOI: 10.1016/j.powtec.2020.05.059

Google Scholar

[12] I. Waini, A. Ishak, I. Pop, Dufour and Soret effects on Al2O3-water nanofluid flow over a moving thin needle: Tiwari and Das model. Int. J. Numer. Methods Heat Fluid Flow. 2021, 31(3), pp.766-782.

DOI: 10.1108/hff-03-2020-0177

Google Scholar

[13] U. Arif, M.A. Memon, R.S. Saif, A.S. El-Shafay, M. Nawaz, T. Muhammad, Triple diffusion with heat transfer under different effects on magnetized hyperbolic tangent nanofluid flow. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. (2022)

DOI: 10.1177/09544089221079139

Google Scholar

[14] J. Buongiorno, Convective transport in nanofluids. Journal of heat transfer. 2006;128(3):240-250.

DOI: 10.1115/1.2150834

Google Scholar

[15] R. K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer. 2007; 50(9-10):2002-2018.

DOI: 10.1016/j.ijheatmasstransfer.2006.09.034

Google Scholar

[16] S. T. Mohyud-Din, et al, A study of heat and mass transfer on magnetohydrodynamics (MHD) flow of nanoparticles. Propulsion and Power Research. 2018;7(1):72-77.

DOI: 10.1016/j.jppr.2018.02.001

Google Scholar

[17] A. Ishak, R. Nazar, I. Pop, Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder. Energy Conversion and Management. 2008;49(11):3265-3269.

DOI: 10.1016/j.enconman.2007.11.013

Google Scholar

[18] G.S. Seth, R.N. Jana, M.K. Maiti, Unsteady hydromagnetic Couette flow in a rotating system, Int. J. Eng. Sci. 20 (9) (1982) 989–999.

DOI: 10.1016/0020-7225(82)90034-9

Google Scholar

[19] N. A. Shah, N. Ahmed, T. Elnaqeeb, M.M. Rashidi, Magnetohydrodynamic free convection flows with thermal memory over a moving vertical plate in porous medium, J. Appl. Comput. Mech. 5 (1) (2019) 150–161.

Google Scholar

[20] M. Azam, A. Shakoor, H.F. Rasool, M. Khan, Numerical simulation for solar energy aspects on unsteady convective flow of MHD Cross nanofluid: a revised approach, Int. J. Heat Mass Tran. 131 (2019) 495–505.

DOI: 10.1016/j.ijheatmasstransfer.2018.11.022

Google Scholar

[21] N. Casson, A flow equation for pigment oil suspensions of the printing ink type. In: Rheology of disperse systems. Mill CC (Ed.) Pergamon Press, Oxford 22 (1959), 84–102.

Google Scholar

[22] K. A. Abro, H.S. Shaikh, I. Khan, A mathematical study of magnetohydrodynamic Casson fluid via special functions with heat and mass transfer embedded in a porous plate. arXiv preprint arXiv:1706.03829. 2017.

Google Scholar

[23] M. Y. Malik, M. Naseer, S. Nadeem, A. Rehman, The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder, Applied Nanoscience, (2013), doi 10.1007/s13204-013- 0267-0.

DOI: 10.1007/s13204-013-0267-0

Google Scholar

[24] S. Mukhopadhyay, et al, Casson fluid flow over an unsteady stretching surface. Ain Shams Engineering Journal. 2013;4(4):933-938.

DOI: 10.1016/j.asej.2013.04.004

Google Scholar

[25] J. Venkatesan, D.S. Sankar, K. Hemalatha, Y. Yatim, Mathematical analysis of Casson fluid model for blood rheology in stenosed narrow arteries, Journal of Applied Mathematics 44 (2013), 1–11.

DOI: 10.1155/2013/583809

Google Scholar

[26] A. S. Oke, W. N. Mutuku, M. Kimathi, I. L. Animasaun, Insight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force. Nonlinear Engineering. 2020;9(1):398-411.

DOI: 10.1515/nleng-2020-0025

Google Scholar

[27] M. Nakamura, T. Sawada, Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis. 1988;137-143.

DOI: 10.1115/1.3108418

Google Scholar

[28] E. Hafidzuddin, R. Nazar, N. Arifin, et al, Boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity. J Appl Fluid Mech. 2016;9:2025-2036.

DOI: 10.18869/acadpub.jafm.68.235.24834

Google Scholar