Nanocrystallization Behaviour of Amorphous Co67Fe4Cr7Si8B14 Alloy

Article Preview

Abstract:

The investigation addresses the structure of a Co-based alloy and its magnetic properties. The major applications of these materials are in the development of different sensors, which require materials with high permeability. The structure evolution processes need to be explored to clarify the main parameters determining the time-temperature stability. In the present paper, a nanocrystallization behavior of Co67Fe4Cr7Si8B14 amorphous alloy manufactured in the form of a ribbon was studied using X-ray diffraction and sample vibromagnetometry methods. The structure evolution induced by the 30min isothermal annealing at a temperature range of 450 - 700 °C was studied by the X-ray diffraction method, and crystallization with hcp-Co, fcc-Co, and Co2B nanophases was revealed depending on the annealing temperature. According to thermomagnetic measurements, the nanocrystallization process corresponds to a three-stage crystallization model. The crystallization onset temperature of the amorphous alloy was observed to be to equal540 °C. The Curie point and saturation magnetization of the as-quenched alloy were defined as 305 °C and 76 Am2/kg, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-11

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Životský O, Titov A, Jirásková Y, Buršík J, Hendrych A, Hrabovská K, Tsepelev V S (2016) Surface and bulk magnetic anisotropy in bilayeredCoSiB/FeNbCuSiB and FeNbSiB/FeSiB ribbons. Journal of Alloys and Compounds, 681, 402-411

DOI: 10.1016/j.jallcom.2016.04.243

Google Scholar

[2] Russew K, Stojanova L (2016) Properties and Applications of Amorphous Metallic Alloys. Glassy Metals, 217-241

DOI: 10.1007/978-3-662-47882-0_13

Google Scholar

[3] Karolus M., Kwapuliński P., Chrobak D., Haneczok G., Chrobak A., J. Mater. Process. Tech. 162-163, 203 (2005)

DOI: 10.1016/j.jmatprotec.2005.02.077

Google Scholar

[4] Torrens-Serra J., Roth S., Rodriguez-Viejo J., Clavaguera-Mora M.T., (2008)J. Non-Cryst. Solids 354, 5110

DOI: 10.1016/j.jnoncrysol.2008.05.057

Google Scholar

[5] V. Fal Miyar et al., "Giant Magnetoimpedance of Electrochemically Surface Modified CoBased Amorphous Ribbons," in IEEE Transactions on Magnetics, vol. 44, no. 11, p.44764479, Nov. 2008.

DOI: 10.1109/TMAG.2008.2002245

Google Scholar

[6] Hristoforou, E., & Niarchos, D. (1992). Amorphous wires in displacement sensing techniques. Journal of Magnetism and Magnetic Materials, 116(1-2), 177-188. doi:10.1016/0304- 8853(92)90162-h

DOI: 10.1016/0304-8853(92)90162-h

Google Scholar

[7] Amitava Mitra, R K Ray and A K PandaApplications of rapidly solidified magnetic materials for structural health monitoring of engineering components. International Conference Magnetism and magnetic materials, Oct. 09-10.2017, London, UK

Google Scholar

[8] Panda, A. K., Kumari, S., Chattoraj, I., Svec, P., & Mitra *, A. (2005). Effect of Fe addition on the crystallization behaviour and Curie temperature of CoCrSiB-based amorphous alloys. Philosophical Magazine, 85(17), 1835-1845

DOI: 10.1080/14786430500098934

Google Scholar

[9] Kraus, L., Švec, P., &Bydžovský, J. (2002). Amorphous CoFeCrSiB ribbons for strain sensing applications. Journal of Magnetism and Magnetic Materials, 242-245, 241- 243

DOI: 10.1016/s0304-8853(01)01249-5

Google Scholar

[10] Buršík, J., Buršíková, V., & Jirásková, Y. (2015). Study of the Mechanical Properties of SingleLayered and BilayeredCoCrFeSi Ribbons Using Quasistatic and Dynamic Nanoindentation Tests. In Key Engineering Materials (Vol. 662, pp.91-94). Trans Tech Publications, Ltd

DOI: 10.4028/www.scientific.net/kem.662.91

Google Scholar

[11] Životský, O., Titov, A., Jirásková, Y., Buršík, J., Kalbacova, J., Janickovic, D., & Švec, P. (2013). Full-scale magnetic, microstructural, and physical properties of bilayeredCoSiB/FeSiB ribbons. Journal of Alloys and Compounds, 581, 685-692.

DOI: 10.1016/j.jallcom.2013.07.126

Google Scholar

[12] Girzhon, V.V. &Rudnev, Yu.V. &Anpilogov, D.I. &Smolyakov, A.V.. (1998). Crystallization of metal-metalloid glasses under laser heating. Scripta Materialia. 39.

DOI: 10.1016/s1359-6462(98)00244-9

Google Scholar

[13] Abrosimova G, Volkov N, Chirkova V, Aronin A (2021) The effect of the type of component crystal lattice on nanocrystal formation in Co-based amorphous alloys. Materials Letters, 297, 129996

DOI: 10.1016/j.matlet.2021.129996

Google Scholar

[14] Mudry S I, Nykyruy Y S (2014) Laser induced structure transformation in Co70Fe3Mn3.5Mo1.5B11Si11 amorphous alloy. Mater Sci-Pol 32, 28-33

DOI: 10.2478/s13536-013-0152-2

Google Scholar

[15] Vasić M M, Žák T, Pizúrová N, Roupcová P, Minić D M, Minić D M (2018) Thermally induced microstructural transformations and anti-corrosion properties of Co70Fe5Si10B15 amorphous alloy. Journal of Non-Crystalline Solids

DOI: 10.1016/j.jnoncrysol.2018.08.017

Google Scholar

[16] Bednarčı́k J, Kováč J, Kollár P, Roth S, Sovák P, Balcerski J, Polanski K, Švec T (2004) Crystallization of CoFeSiB metallic glass induced by long-time ball milling. Journal of NonCrystalline Solids, 337(1), 42-47

DOI: 10.1016/j.jnoncrysol.2004.03.105

Google Scholar

[17] DeGeorge, V., Zoghlin, E., Keylin, V., & McHenry, M. (2015). Time temperature transformation diagram for secondary crystal products of Co-based Co-Fe-B-Si-Nb-Mn soft magnetic nanocomposite. Journal of Applied Physics, 117(17), 17A329

DOI: 10.1063/1.4916759

Google Scholar

[18] Knapek M, Minárik P, Dobroň P, Šmilauerová J, Celis M M, Hug E, Chmelík F (2020) The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt. Materials, 13(24), 5775

DOI: 10.3390/ma13245775

Google Scholar

[19] Bauer R, Jägle E A, Baumann W, Mittemeijer E J (2011) Kinetics of the allotropic hcp-fcc phase transformation in cobalt.Philos. Mag. 91:437-457.

DOI: 10.1080/14786435.2010.525541

Google Scholar

[20] Fernández, A., Pérez, M. J., Tejedor, M., & Madurga, V. (2000). Thermo-magnetic analysis of amorphous (CoxFe1−x)73.5Nb3Cu1Si13.5B9 metallic glasses. Journal of Magnetism and Magnetic Materials, 221(3), 338-344

DOI: 10.1016/s0304-8853(00)00493-5

Google Scholar

[21] Vasić, M.M., Žák, T. & Minić, D.M. Kinetics and influence of thermally induced crystallization of Fe,Ni--containing phases on thermo-magnetic properties of Fe40Ni40B12Si8 amorphous alloy. J Therm Anal Calorim 147, 3543-3551 (2022). https://doi.org/10.1007/s10973-021- 10819-x

DOI: 10.1007/s10973-021-10819-x

Google Scholar

[22] Zakharenko, M., Brud'ko, O., Babich, M., Nosenko, V., Tsvetkova, T., & Stelmakh, O. (2000). Thermo-magnetic study of the Fe80Si6B14-based soft magnetic glasses. Journal of Magnetism and Magnetic Materials, 215-216, 313-315

DOI: 10.1016/s0304-8853(00)00303-6

Google Scholar

[23] Nykyruy Yu, Mudry S., Shtablavyi I., Borisyuk A., Tsekhmister Ya, Gnilitskyi I., (2022) Formation of laser-induced periodic surface structures on amorphous Fe- and Co-based alloys and its impact on magnetic properties, Materials Chemistry and Physics, ,126317.

DOI: 10.1016/j.matchemphys.2022.126317

Google Scholar

[24] Nykyruy, Y., Mudry, S., Kulyk, Y. et al. Magnetic properties and nanocrystallization process in Co-(Me)-Si-B amorphous ribbons. Appl Nanosci 13, 5239-5249 (2023)

DOI: 10.1007/s13204-022-02746-6

Google Scholar

[25] Jancarik, V. (2013). MAGNETOELASTIC PROPERTIES OF CoFeCrSiB AMORPHOUS RIBBONS - A POSSIBILITY OF THEIR APPLICATION.

Google Scholar

[26] Nosenko, A. V., Kyrylchuk, V. V., Semen'ko, M. P., Nowicki, M., Marusenkov, A., Mika, T. M., … Nosenko, V. K. (2020). Soft magnetic cobalt based amorphous alloys with low saturation induction. Journal of Magnetism and Magnetic Materials, 167328

DOI: 10.1016/j.jmmm.2020.167328

Google Scholar