Performance Analysis of Galvanized Structures for an Earth-Air Heat Exchanger System

Article Preview

Abstract:

This study presents an investigation on Earth-Air Heat Exchangers (EAHEs), a sustainable and cost-effective alternative for improving thermal conditions in environments. The EAHE consists of one or more ducts buried at a certain depth, and a ventilation system, which allows air to flow through the ducts and exchange heat with the soil. The soil, being warmer than the ambient air during cold periods and cooler during hot periods, facilitates this heat exchange. The research aims to evaluate and compare the potential of the soil and EAHE in a system where a galvanized material, shaped like an ellipse, is attached around the duct. Given the high thermal conductivity of galvanization, this material helps enhance the thermal potential of the soil. Two tests were conducted by altering the horizontal and vertical dimensions of the ellipse while keeping the area constant. The results obtained with the galvanized structure were compared with those obtained without the use of this material. Moreover, the authors compared two different geometries of the structures: a circular one, which had been previously tested, and an ellipsoidal one. Additionally, the thermal potentials of the soil and the system improved as the horizontal length of the ellipse decreased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-110

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.V.A. Ramalho, H.J. Fernando, R.S. Brum, A.M.B. Domingues, N.R.N. Pastor, M.R.B. Olivera, Accessing the thermal performance of Earth–air heat exchangers surrounded by galvanized structures, Sustain. Energy Technol. Assess. 54 (2022) 102838.

DOI: 10.1016/j.seta.2022.102838

Google Scholar

[2] H. Li, L. Ni, Y. Yao, C. Sun, Experimental investigation on the cooling performance of an earth to air heat exchanger (EAHE) equipped with an irrigation system to adjust soil moisture, Energy Build. 196 (2019) 280–92.

DOI: 10.1016/j.enbuild.2019.05.007

Google Scholar

[3] M.K. Rodrigues, F.S. Coswig, K.R. Camargo, L.A. Isoldi, R.S. Brum, J.V.A. Ramalho, J. Vaz, L.A.O. Rocha, E.D. dos Santos, Thermal performance simulations of Earth-Air Heat Exchangers for different soils of a coastal city using in-situ data, Sustain. Energy Technol. Assess. 30 (2018) 224-229.

DOI: 10.1016/j.seta.2018.10.003

Google Scholar

[4] A. Shahsavar, P. Talebizadehsardari, M. Arici, Comparative energy, exergy, environmental, exergoeconomic, and enviroeconomic analysis of building integrated photovoltaic/thermal, earth-air heat exchanger, and hybrid systems, Journal of Cleaner Production. 362 (2022).

DOI: 10.1016/j.jclepro.2022.132510

Google Scholar

[5] H. Wei, D. Yang, J. Du, X. Guo, Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region, Renew. Energy. 167 (2021) 530-541.

DOI: 10.1016/j.renene.2020.11.112

Google Scholar

[6] A.M. Akbarpoor, A.H. Poshtiri, F. Biglari, Performance analysis of domed roof integrated with earth-to-air heat exchanger system to meet thermal comfort conditions in buildings, Renew. Energy. 168 (2021) 1265-1293.

DOI: 10.1016/j.renene.2020.12.110

Google Scholar

[7] T. Long, W. Li, Y. Lv, Y. Li, S. Liu, J. Lu, S. Huang, Y. Zhang, Benefits of integrating phase-change material with solar chimney and earth-to-air heat exchanger system for passive ventilation and cooling in summer, Journal of Energy Storage. 48 (2022).

DOI: 10.1016/j.est.2022.104037

Google Scholar

[8] V.M. Maytorena, J.F. Hinojosa, S. Moreno, D.A. Buentello-Montoya, Thermal performance analysis of a passive hybrid earth-to-air heat exchanger for cooling rooms at Mexican desert climate, Case Studies in Thermal Engineering. 41 (2023) 1-21.

DOI: 10.1016/j.csite.2022.102590

Google Scholar

[9] J. Xiao, Q. Wang, X. Wang, Y. Hu, Y. Cao, J. Li, An earth-air heat exchanger integrated with a greenhouse in cold-winter and hot-summer regions of northern China: Modeling and experimental analysis, Applied Thermal Engineering. 232 (2023).

DOI: 10.1016/j.applthermaleng.2023.120939

Google Scholar

[10] M. Benhammou, L. Boubekeur, H. Moungar, Y. Sahli, Performance assessment of a novel type of Earth-to-Air Heat Exchanger consisting of a composite pipe integrating a convective zone for summer cooling of buildings, Journal of Energy Storage. 62 (2023) 1-18.

DOI: 10.1016/j.est.2023.106890

Google Scholar

[11] L.C. Durante, F.M.B. Arêdes, I.J.A. Callejas, G.D. Andrade, J.P. Bonaldo, R. F. S. Teixeira, A.C.F. Gomes, K.A.C. Rosseti, Geotermia aplicada à estabilização de temperaturas internas de edificações brasileiras, Revista de Gestão e Secretariado. 15 (2024) 1241-1267.

DOI: 10.7769/gesec.v15i1.3334

Google Scholar

[12] A.M.B. Domingues, E.S.B. Nóbrega, J.V.A. Ramalho, R.S. Brum, R.S. Quadros, Parameter analysis of Earth-air heat exchangers over multi-layered soils in South Brazil, Geothermics 93 (2021) 1-14.

DOI: 10.1016/j.geothermics.2021.102074

Google Scholar

[13] R.S. Brum, J.V.A. Ramalho, M.K. Rodrigues, L.A.O. Rocha, L.A. Isoldi, E.D. Santos, Design evaluation of Earth-air heat exchangers with multiple ducts, Renew. Energy 135 (2019) 1371-1385.

DOI: 10.1016/j.renene.2018.09.063

Google Scholar

[14] V.F. Hermes, J.V.A. Ramalho, L.A.O. Rocha, E.D. Santos, W.C. Marques, J. Costi, M.K. Rodrigues, L.A. Isoldi, Further realistic annual simulations of earth-air heat exchangers installations in a coastal city, Sustain. Energy Technol. Assess. 37 (2020) 1-11.

DOI: 10.1016/j.seta.2019.100603

Google Scholar

[15] R. Hassanzadeh, M. Darvishyadegari, S. Arman, A new idea for improving the horizontal straight ground source heat exchangers performance, Sustain. Energy Technol. Assess. 25 (2018) 138-145.

DOI: 10.1016/j.seta.2017.12.006

Google Scholar

[16] M.R.B. Olivera, Análise paramétrica de trocadores de calor solo-ar acoplados a estruturas galvanizadas, Dissertação de Mestrado, Programa de Pós-graduação em Modelagem Matemática, Universidade Federal de Pelotas, Pelotas, Brasil, 2022.

DOI: 10.21475/ajcs.17.11.03.pne219

Google Scholar

[17] N.R.N. Pastor, Análise de desempenho de trocadores de calor solo-ar aletados, Dissertação de Mestrado, Programa de pós-graduação em Modelagem Matemática, Universidade Federal de Pelotas, Pelotas, Brasil, 2022.

DOI: 10.21475/ajcs.17.11.03.pne219

Google Scholar

[18] J. Vaz, M.A. Sattler, E.D. Santos, L.A. Isoldi, Experimental and numerical analysis of an earth-air heat exchancher, Energy Build. 43 (2011) 2476-2482.

DOI: 10.1016/j.enbuild.2011.06.003

Google Scholar

[19] A.M.B. Domingues, Avaliações da eficiência e potenciais térmicos de trocadores de calor solo-ar com dutos envoltos por um bloco galvanizado, Trabalho de Conclusão de Curso (Licenciatura em Matemática), Instituto de Física e Matemática, Universidade Federal de Pelotas, Pelotas, Brasil, 2022.

DOI: 10.58560/rmmsb.v03.n02.023.05

Google Scholar

[20] St. Benkert, F.D. Heidt, D. Schöler, Calculation tool for earth heat exchangers GAEA, Proceedings Building Simulation, Fifth International - IBPSA Conference 2. (1997).

Google Scholar

[21] T.J.R. Hughes, The finite element method (Linear Static and Dynamic Finite Element Analysis), Prentice Hall, Inc., New Jersey, 1987.

Google Scholar

[22] M.N. Özisik, Heat Conduction, John Wiley & Sons, New York, 1993.

Google Scholar