Comprehensive Measurement and Simulation of Prototype Injection Moulds

Article Preview

Abstract:

The injection moulding industry is dynamically developing. The growing demand for more customizable products can be served by low or middle volume production using prototype moulds and inserts. The conventional material of prototype moulds is aluminum because of its excellent machinability, acceptable strength and stiffness and outstanding thermal conductivity. Prototype moulds are gaining ground in the injection moulding industry, yet their operational behavior (including exact mechanical and thermal process parameters) is largely unknown. We created a comprehensive state monitoring system that measures the operational strain, cavity pressure and temperature of different prototype injection moulds. This way, all important process parameters can be measured and the relations between the moulding parameters and the operational pressure loads, deformations and temperatures can be quantified and analysed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-150

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kim., R. Smierciak, Y.S. Shin, L. Cooper, Advances in Aluminum Mold Block for Plastic Injection Molding Operations. In: Weiland, H., Rollett, A.D., Cassada, W.A. (eds) ICAA13 Pittsburgh (2012)

DOI: 10.1007/978-3-319-48761-8_243

Google Scholar

[2] C.-C. Kuo, X.-Y Pan, Development of a Rapid Tool for Metal Injection Molding Using Aluminum-Filled Epoxy Resins. Polymers 15 (2023) 3513. https://doi.org/10.3390/ polym15173513

DOI: 10.3390/polym15173513

Google Scholar

[3] C.-C. Kuo, Y. J. Zhu, Y. Z. Wu, Development and application of a large injection mold with conformal cooling channels. Int J Adv Manuf Technol 103 (2019) 689–701

DOI: 10.1007/s00170-019-03614-4

Google Scholar

[4] C.-C. Kuo, T.-D. Nguyen, Y.-J. Zhu, S.-X. Lin, Rapid Development of an Injection Mold with High Cooling Performance Using Molding Simulation and Rapid Tooling Technology. Micromachine 12 (2021) 311

DOI: 10.3390/mi12030311

Google Scholar

[5] A. S. Struchtrup, D. Kvaktun, R. Schiffers, A holistic approach to part quality prediction in injection molding based on machine learning Advances in Polymer Processing 2020, Springer, Berlin/Heidelberg, Germany (2020) 137-149

DOI: 10.1007/978-3-662-60809-8_12

Google Scholar

[6] R. D. Párizs, D. Török, T. Ageyeva, J. G. Kovács, Machine Learning in Injection Molding: An Industry 4.0 Method of Quality Prediction, Sensors, 22, (2022) 2704/1-2704/16

DOI: 10.3390/s22072704

Google Scholar

[7] K.-C. Ke, M.-S. Huang, Quality classification of injection-molded components by using quality indices, grading, and machine learning, Polymers, 13(3), (2021) 353

DOI: 10.3390/polym13030353

Google Scholar

[8] J.-Y. Chen, J.-X. Zhuang, M.-S. Huang, Enhancing the quality stability of injection molded parts by adjusting V/P switchover point and holding pressure, Polymer, 213, (2021) 123332

DOI: 10.1016/j.polymer.2020.123332

Google Scholar

[9] C.-W. Su, W.-J. Su, F.-J. Cheng, G.-Y. Liou, S.-J. Hwang, H.-S. Peng, H.-Y. Chu, Optimization process parameters and adaptive quality monitoring injection molding process for materials with different viscosity, Polymer Testing, 109, (2022) 107526

DOI: 10.1016/j.polymertesting.2022.107526

Google Scholar

[10] Sz. Krizsma, A Suplicz, Comprehensive in-mould state monitoring of Material Jetting additively manufactured and machined aluminium injection moulds, Journal of Manufacturing Processes, 84, pp.1298-1309, 2022

DOI: 10.1016/j.jmapro.2022.10.070

Google Scholar

[11] Sz. G. Krizsma, N. K. Kovács, J. G. Kovács, A. Suplicz, In-situ monitoring of deformation in rapid prototyped injection molds, Additive Manufacturing, 42, (2021) 102001/1-102001/8

DOI: 10.1016/j.addma.2021.102001

Google Scholar

[12] J.G. Kovács, F. Szabó, N.K. Kovács, A. Suplicz, B. Zink, T. Tábi, H. Hargitai, Thermal simulations and measurements for rapid tool inserts in injection molding applications, Applied Thermal Engineering, 85(25), (2015) pp.44-51 https://doi.org/10.1016/j.applthermaleng. 2015.03.075

DOI: 10.1016/j.applthermaleng.2015.03.075

Google Scholar

[13] B. Zink, F. Szabó, I. Hatos, A. Suplicz, N. K. Kovács, H. Hargitai, T. Tábi, J. G. Kovács, Enhanced Injection Molding Simulation of Advanced Injection Molds. Polymers, 9 (2017) 77

DOI: 10.3390/polym9020077

Google Scholar