Numerical Simulation of the Thermal Performance of a Building Using Electrochromic Devices

Article Preview

Abstract:

More energy-efficient buildings have a significant impact on reducing energy consumption, as they provide thermal comfort to their occupants with lower electricity usage. Aligned with the interpretation of thermal performance, this article analyzes the results of a thermo-energy performance simulation of a residential building located in different bioclimatic zones, Pelotas/RS (BZ2) and Cuiabá (BZ7). For the simulation, the EnergyPlus software was used, varying the configuration of the building's windows, including electrochromic film, double glass, and common glass. The energy consumption results were analyzed, and finally, the thermal comfort of each model was evaluated using the adaptive method of ASHRAE 55 (2017), with the aim of assisting in the design and construction of residential buildings that are truly suitable and adapted to the climate. After conducting the simulations, it was possible to conclude that the use of electrochromic film led to the greatest reduction in energy consumption in both Zones, by 1.8% in BZ2 and 13.9% in BZ7, with an increase in thermal comfort in both simulated cases, showing better results in BZ7, a region with a hot climate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-120

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.F. Ahmed, M.M.K. Khan, A parametric analysis of the cooling performance of vertical earth-air heat exchanger in a subtropical climate, Renewable Energy, 172 (2021) 350-367.

DOI: 10.1016/j.renene.2021.02.086

Google Scholar

[2] M.J. Bordbari, A.R. Seifi, M. Rastegar, Probabilistic energy consumption analysis in buildings using point estimate method, Energy, 142 (2017) 350-367.

DOI: 10.1016/j.energy.2017.10.091

Google Scholar

[3] X. Bai, R.J. Dawson, D. Ürge-Vorsatz, G. Delgado, A.S. Barau, S. Dhakal, D. Dodman, L. Leonardsen, V. Masson-Delmotte, D.C. Roberts, S. Schultz, Six research priorities for cities and climate change. Nature Climate Change, 555 (2018) 23-25.

DOI: 10.1038/d41586-018-02409-z

Google Scholar

[4] C. Li, Y. Zhang, Y. Xie, When an attacker meets a cipher-image in 2018: A year in review, Journal of Information Security and Applications, 48 (2019).

DOI: 10.1016/j.jisa.2019.102361

Google Scholar

[5] P.G. Machado, R.S. Brum, D. Buske, Evaluation of the thermal potential of earth-air heat exchangers. Ciência e Natura, 43 (2021).

Google Scholar

[6] R. Lamberts, E. Ghisi, A.L.P. Abreu, J.C. Carlo, J.O. Batista, D.L. Marinoski, A. Naranjo, V.C.P. Duarte, Desempenho Térmico de Edificações, seventh ed., Laboratório de Eficiência Energética em Edificações, Universidade Federal de Santa Catarina, Florianópolis, 2016.

DOI: 10.5196/physicae.v11i11.311

Google Scholar

[7] M.K. Rodrigues, R.S. Brum, J. Vaz, L.A.O. Rocha, E. dos Santos, L. Isoldi, Numerical investigation about the imporvement of the thermal potential of an earth-air heat exchanger (EAHE) employng the constructal design method, Renewable Energy, 80 (2015) 538-551.

DOI: 10.1016/j.renene.2015.02.041

Google Scholar

[8] J. Sobti, S. Singh, Earth-air heat exchanger as a green retrofit for chandıgarh - a critical review. Geotherm Energy, 14 (2015) 333-340.

DOI: 10.1186/s40517-015-0034-4

Google Scholar

[9] C.B. Plamer, Modelagem computacional e método constructal design aplicados a um conversor de energia das ondas do mar do tipo coluna de água oscilante (CAO) analisando a influência em seu desempenho da variação da razão entre o volume de entrada e o volume total da câmara hidropneumática, Dissertação de Mestrado, Programa de Pós-graduação em Modelagem Computacional, Universidade Federal do Rio Grande, Rio Grande, 2016.

DOI: 10.5380/rber.v6i3.52995

Google Scholar

[10] R. Lamberts, L. Dutra, F.O.R. Pereira, Eficiência Energética na Arquitetura, third ed., Eletrobras/Procel, Rio de Janeiro, 2014.

Google Scholar

[11] Information on https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-(2021)

Google Scholar

[12] Information on https://abividro.org.br/wp-content/uploads/2021/08/Manual-Tecnico-Vidro-Plano-Para-Edificacoes.pdf

Google Scholar

[13] M. Casini, Active dynamic windows for buildings: A review. Renewable Energy, 119 (2018) 923-934.

DOI: 10.1016/j.renene.2017.12.049

Google Scholar

[14] I. Lahmar, A. Cannavale, F. Martellotta, N. Zemmouri, The impact of building orientation and window-to-wall ratio on the performance of electrochromic glazing in hot arid climates: A parametric assessment. Buildings, 12 (2022).

DOI: 10.3390/buildings12060724

Google Scholar

[15] M. Corsi, R. Zmeureanu, P. Fazio, Modeling of electrochromic glazing switching control strategies in micro-DOE-2.1, Centre for Building Studies, Concordia University, 2023.

Google Scholar

[16] P. Tavares, H. Bernardo, A. Gaspar, A.G. Martins, Control criteria of electrochromic glasses for energy savings in mediterranean buildings refurbishment, Solar Energy, 134 (2016) 236-250.

DOI: 10.1016/j.solener.2016.04.022

Google Scholar

[17] A. Cannavale, F. Martellotta, P. Cossari, G. Gigli, U. Ayr, Energy savings due to building integration of innovative solid-state electrochromic devices. Energy, 225 (2018) 975-985.

DOI: 10.1016/j.apenergy.2018.05.034

Google Scholar

[18] H. Qing, M.U. Hossain, S.T. Ng, M. Skitmore, Energy-efficient window retrofit for high-rise residential buildings in different climatic zones of China. Sustainability, 11 (2019).

DOI: 10.3390/su11226473

Google Scholar

[19] J.A. Pouey, Projeto de edificação residencial unifamiliar para a Zona Bioclimática 2 com avaliação termoenergética por simulação computacional, Dissertação de Mestrado, Programa de Pós-graduação em Arquitetura e Urbanismo, Universidade Federal de Pelotas, Pelotas, 2011.

DOI: 10.21475/ajcs.17.11.03.pne219

Google Scholar

[20] R. Dalbem, J.M.R. Freitas, E.G. Cunha, Passivhaus concept applied to brazilian climate. Revista de Arquitetura IMED, 4 (2015) 26-36.

DOI: 10.18256/2318-1109/arqimed.v4n1p26-36

Google Scholar

[21] J.S. Porto, Intelligent window thermoenergetic and optical performance by computational simulation, Tese de Doutorado, Programa de Pós-graduação em Ciências e Engenharia de Materiais, Universidade Federal de Pelotas, Pelotas, 2019.

DOI: 10.21475/ajcs.17.11.03.pne219

Google Scholar