The Effect of the Number of Precursor Spin-Coating on the Properties of Sb2(S,Se)3 Thin Film

Article Preview

Abstract:

Preparing of Sb2S3 precursor by sol gel method and the post selenization is a simple and low-cost method for preparing Sb2(S, Se)3. In the preparation process of this method, the number of spin-coating of Sb2S3 precursor determines the film thickness, structure, and S/Se ratio. In this work, the effects of different spin-coating times (1 to 5) on the structure, optical and electrical properties of the film were studied. The results showed that when the number of spin-coating increased from 1 to 5, the thickness of the film increased from 0.24 μm to 1.17 μm. When spin-coating twice, the strongest diffraction peak of the film changed from (120) to (230); as the spin-coating frequency continued to increase, the film gradually exhibited Sb2S3 characteristics, accompanied by a small amount of Sb2O3 impurities. In addition, excessive spin-coating cycles can cause large voids to appear on the surface of the film. From the UV-visible spectrum, it can be seen that as the thickness of the film increases, the light absorption also gradually improve, and the band gap increases from 1.34 eV to 1.66 eV. The Mott-Schottky test showed that the prepared thin films were all P-type semiconductor. When spin-coated twice, the carrier concentration of the thin film reached 5.8×1015cm-3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-160

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Pan, X. Hu, Y. Guo, X. Pan, F. Zhao, G. Weng, J. Tao, C. Zhao, J. Jiang, S. Chen, P. Yang, J. Chu, Vapor Transport Deposition of Highly Efficient Sb2(S,Se)3 Solar Cells via Controllable Orientation Growth, Adv. Funct. Mater. 31 (2021) 2101476.

DOI: 10.1002/adfm.202170204

Google Scholar

[2] Z. Duan, Y. Feng, H. Ma, B. Liang, Y. Wang, S. Luo, S. Wang, Z. Li, Sb2Se3 Thin Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition (IVD) Technology, Adv. Mater. 34 (2022) 2202969.

DOI: 10.1002/adma.202202969

Google Scholar

[3] Y. Lu, K. Li, X. Yang, S. Lu, S. Li, J. Zheng, L. Fu, C. Chen, J. Tang, HTL-Free Sb2(S,Se)3 Solar Cells with an Optimal Detailed Balance Band Gap, ACS Appl. Mater. Interfaces, 13 (2021) 46858−46865.

DOI: 10.1021/acsami.1c10758

Google Scholar

[4] Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R.E.I. Schropp, Y. Mai, 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells, Nat. Commun. 10 (2019) 125.

DOI: 10.1038/s41467-018-07903-6

Google Scholar

[5] M. Luo,M. Leng,X. Liu,J. Chen,C. Chen,S. Qin,J. Tang, Thermal evaporation and characterization of superstrate CdS/Sb2Se3 solar cells, Appl. Phys. Lett. 104 (17) 173904-173904-4.

DOI: 10.1063/1.4874878

Google Scholar

[6] X. Wen, C. Chen, S. Lu, K. Li, R. Kondrotas, Y. Zhao, W. Chen, L. Gao, C. Wang, J. Zhang, G. Niu, J. Tang, Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency, Nat. Commun. 9 (2018) 2179.

DOI: 10.1038/s41467-018-04634-6

Google Scholar

[7] G.X. Liang, X.H. Zhang, H.L. Ma, J.G. Hu, B. Fan, Z.K. Luo, Z.H. Zheng, J.T. Luo, P. Fan, Facile preparation and enhanced photoelectrical performance of Sb2Se3 nano-rods by magnetron sputtering deposition, Sol. Energy Mater. Sol. Cells, 160 (2017) 257-262.

DOI: 10.1016/j.solmat.2016.10.042

Google Scholar

[8] R. Tang, X. Wang, W. Lian, J. Huang, Q. Wei, M. Huang, Y. Yin, C. Jiang, S. Yang, G. Xing, S. Chen, C. Zhu, X. Hao, M. A. Green , T. Chen, Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency, Nat. Energy, 5 (2020) 587-595.

DOI: 10.1038/s41560-020-0652-3

Google Scholar

[9] B. Krishnan, A. Arato, E. Cardenas, T.K. Das Roy, G.A. Castillo, On the structure, morphology, and optical properties of chemical bath deposited Sb2S3 thin films, Appl. Surf. Sci. 254 (2008) 3200–3206.

DOI: 10.1016/j.apsusc.2007.10.098

Google Scholar

[10] Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, X. Liu, B. Yang, J. Zhang, J. Chen, K. Zhou, J. Han, Y. Cheng, J. Tang, Solution-Processed Antimony Selenide Heterojunction Solar Cells. Adv. Energy Mater. 4 (2014) 1301846.

DOI: 10.1002/aenm.201301846

Google Scholar

[11] R. Krautmann, N. Spalatu, R. Gunder, D. Abou-Ras, T. Unold, S. Schorr, M. Krunks, I. Oja. Acik, Analysis of grain orientation and defects in Sb2Se3 solar cells fabricated by close-spaced sublimation. Sol. Energy, 225 (2021) 494-500.

DOI: 10.1016/j.solener.2021.07.022

Google Scholar

[12] Y.C. Choi,T. N. Mandal W.S. Yang Y.H. Lee, S.H. Im, J.H. Noh, S.I. Seok, Sb2Se3‐Sensitized Inorganic–Organic Heterojunction Solar Cells Fabricated Using a Single‐Source Precursor. Angew. Chem. Int. Ed. 53 (2014) 1329-1333.

DOI: 10.1002/anie.201308331

Google Scholar

[13] S.H. Wu, C.W. Chang, H.J. Chen, C.F. Shih, Y.Y. Wang , C.C. Li, S.W. Chan, High‐efficiency Cu2ZnSn(S,Se)4 solar cells fabricated through a low‐cost solution process and a two‐step heat treatment. Prog. Photovolt: Res. Appl. 25 (2017) 58-66.

DOI: 10.1002/pip.2810

Google Scholar

[14] P Chin, C.S. Grant D.F. Ollis, Quantitative photocatalyzed soot oxidation on titanium dioxide. Appl. Catal. B- Environ. 87 (2009) 220-229.

DOI: 10.1016/j.apcatb.2008.09.020

Google Scholar

[15] D.W. Zeng , B.L. Zhu , C.S. Xie, W.L. Song, A.H. Wang, Oxygen partial pressure effect on synthesis and characteristics of Sb2O3 nanoparticles. Mater. Sci. Eng A, 366 (2004) 332-337.

DOI: 10.1016/j.msea.2003.08.044

Google Scholar

[16] Y. D. Luo, R. Tang, S. Chen, J.G. Hu, Y.K. Liu, Y.F. Li, X.S. Liu, Z.H. Zheng, Z.H. Su, X.F. Ma, P. Fan, X.H. Zhang, H.L. Ma, Z.G. Chen, G.X. Liang, An effective combination reaction involved with sputtered and selenized Sb precursors for efficient Sb2Se3 thin film solar cells. Chem. Eng. J. 393 (2020) 124599.

DOI: 10.1016/j.cej.2020.124599

Google Scholar

[17] R. Mahani, E.A. El-Sayad, Effect of sulfur doping on the dielectric properties of Sb2Se3 system. J. Adv. Dielect. 9 (2018) 1950001-5.

DOI: 10.1142/s2010135x19500012

Google Scholar

[18] N. Fleck, T. D. C. HOBSON, C.N. SAVORY, J. Buckeridge, T.D. Veal, M.R. Correia, D.O. Scanlon, K. Durose, F. Jäckel, Identifying raman modes of Sb2Se3 and their symmetries using angle-resolved polarised raman spectra. J. Mater. Chem. A, 8 (2020) 8337-8344.

DOI: 10.1039/d0ta01783c

Google Scholar

[19] F Yakuphanoglu, M Sekerci, A Balaban, The effect of film thickness on the optical absorption edge and optical constants of the Cr(III) organic thin films. Opt. Mater. 27 (2005) 1369-1372.

DOI: 10.1016/j.optmat.2004.07.015

Google Scholar

[20] F.D.B. Sánchez, M.T.S. Nair, P.K. Nair, Optimum chemical composition of antimony sulfide selenide for thin film solar cells. Appl. Surf. Sci. 454 (2018) 305-312.

DOI: 10.1016/j.apsusc.2018.05.076

Google Scholar

[21] B.Yang, D.-J. Xue, M. Leng, J. Zhong, L. Wang, H. Song , Y. Zhou, J. Tang, Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S1−xSex)3 film: molecular precursor identification, film fabrication and band gap tuning. Sci. Rep. 5 (2015) 10978.

DOI: 10.1038/srep10978

Google Scholar

[22] L. Zhang, J. Qu, X. Kong, B. Liu, H. Yan, CIGS film from selenized of the electrodeposited CuIn alloy and CuGa oxide/hydroxide precursor. Appl. Phys. A, 127 (2021) 82.

DOI: 10.1007/s00339-021-04965-0

Google Scholar