[1]
T. Gric, et al., Tunable Plasmonic Properties and Absorption Enhancement in Terahertz Photo-conductive Antenna Based on Optimized Plasmonic Nanostructures, J. Infrared, Millimeter, Terahertz Waves 39, 284 no. 10 (2018) 1028-1038.
DOI: 10.1007/s10762-018-0516-0
Google Scholar
[2]
S. Nomoev, I. Vasilevskii, E. Khartaeva, Computational modeling of THz photoconductive antenna with plasmonic gold nanorod, AIP Conference Proceedings, AIP Publishing 2504, no.1 (2023) 030041-1–030041-5.
DOI: 10.1063/5.0132407
Google Scholar
[3]
C.W. Berry, et al., High-power terahertz generation using 1550 nm plasmonic photomixers, Appl. Phys. Lett. 105, no. 1 (2014) 011121.
Google Scholar
[4]
N.T. Yardimci, H. Lu, M. Jarrahi, High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays, Appl. Phys. Lett. 109, no. 19 (2016) 191103.
DOI: 10.1063/1.4967440
Google Scholar
[5]
C.W. Berry, M. Jarrahi, Terahertz generation using plasmonic photoconductive gratings, New J. Phys. 14, no. 10 (2012) 105029.
DOI: 10.1088/1367-2630/14/10/105029
Google Scholar
[6]
B. Heshmat, et al., Nanoplasmonic Terahertz Photoconductive Switch on GaAs, Nano Lett. 12, no. 12 (2012) 6255––6259.
DOI: 10.1021/nl303314a
Google Scholar
[7]
D.V. Lavrukhin, et al., Terahertz photoconductive emitter with dielectric-embedded high-aspect ratio plasmonic grating for operation with low-power optical pumps, AIP Adv. 9, no 1, pp. (2019) 015112.
DOI: 10.1063/1.5081119
Google Scholar
[8]
R. Anvari, H. Soofi, Enhancement of photocurrent in THz photoconductive antenna by a gold nanorod array, Optik 207 (2020)163827.
DOI: 10.1016/j.ijleo.2019.163827
Google Scholar
[9]
M. Bashirpour, J. Poursafar, M. Kolahdouz, M. Hajari, M. Forouzmehr, M. Neshat, H. Haji-hoseini, M. Fathipour, Z. Kolahdouz, G. Zhang, Terahertz radiation enhancement in dipole photoconductive antenna on LT-GaAs using a gold plasmonic nanodisk array, Optics and Laser Technology, 120, 1-6, (2019) 105726.
DOI: 10.1016/j.optlastec.2019.105726
Google Scholar
[10]
S.A. Nomoev, I.S. Vasil'evskii, A.N. Vinichenko, et al., The Influence of the Annealing Regime on the Properties of Terahertz Antennas Based on Low-Temperature-Grown Gallium Arsenide, Tech. Phys. Lett. 44 (2018) 44–46.
DOI: 10.1134/s1063785018010169
Google Scholar
[11]
A.M. Buryakov, M.S. Ivanov, D.I. Khusyainov, A.V. Gorbatova, V.R. Bilyk, E.A. Klimov, G.B. Galiev, P.M. Vilarinho, E.D. Mishina, Effects of Crystallographic Orientation of GaAs Substrate and the Period of Plasmon Grid on THz Antenna Performance, ANNALEN DER PHYSIK, 533 (2021) 2100041.
DOI: 10.1002/andp.202100041
Google Scholar
[12]
А.А. Gorbatsevich, V.I. Egorkin, I.P. Kazakov, et al. Issledovaniye dinamicheskikh kharakteristik 'nizkotemperaturnogo' arsenida galliya dlya generatorov i detektorov teragertsovogo diapazona, Kratkiye soobshcheniya po fizike FIAN 42, №5 (2015) 3-11.
Google Scholar
[13]
A.N. Klochkov, E.A. Klimov, P.M. Solyankin, et al. THz Radiation of Photoconductive Antennas based on {LT-GaAa/GaAa:Si} Superlattice Structures. Opt. Spectrosc. 128 (2020) 1010-1017.
DOI: 10.1134/s0030400x20070097
Google Scholar
[14]
G.B. Galiev, I.N. Trunkin, A.L. Vasiliev, I.S. Vasil'evskii, A.N. Vinichenko, E.A. Klimov, A.N. Klochkov, P.P. Maltsev, S.S. Pushkarev, New Structure for Photoconductive Antennas Based on {LTG-GaAs/GaAs:Si} Superlattice on GaAs(111)A Substrate, Crystallogr. Rep. 64 (2019) 205–211.
DOI: 10.1134/s1063774519020111
Google Scholar