Cahn-Hilliard Equation in Noise Reduction and Concentration-Dependent Heat Transfer

Article Preview

Abstract:

The Cahn-Hilliard equation, known for describing the evolution of interfaces in multicomponent systems, can also be employed to noise reduction in mathematical functions and concentration-dependent heat transfer simulations. This work presents a finite difference method discretization of the Cahn-Hilliard equation and explores its applications. For noise reduction, three different noisy functions are simulated, demonstrating effective recovery of original functions despite significant noise levels. In heat transfer simulations, three initial temperature distributions are explored with concentration-dependent thermal diffusivity. Results show that concentration significantly affects thermal diffusivity and heat propagation, leading to non-uniform temperature distributions. Comparative simulations without concentration influence highlight the distinct impact of concentration on thermal behavior. The study underscores a reliable approach to noise reduction and insight into concentration-dependent heat transfer dynamics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-136

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Gaur, A. Chouhan, A. Singh and E. Ijmtst, Current Role of Numerical Analysis in Mathematics, International Journal for Modern Trends in Science and Technology (2022).

Google Scholar

[2] D.A.R. Justo, E. Sauter, F.S. de Azevedo, L.F. Guidi and P.H.A. Konzen, Cálculo Numérico: Um livro colaborativo, information on https://www.ufrgs.br/reamat/CalculoNumerico/livro-py/livropy.pdf

Google Scholar

[3] R.L. Burden, D.J. Faires and A.M. Burden, Análise Numérica, third ed., Cengage Learning, São Paulo, 2016.

Google Scholar

[4] R.S. Quadros and A.L. de Bortoli, Fundamentos de Cálculo Numérico para Engenheiros, Porto Alegre, 2009. FBN: 361.985.

Google Scholar

[5] A.F.R. de Almeida, Análise matemática da equação de Cahn-Hilliard, Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Matemática e Estatística, Pará, 2015.

DOI: 10.46732/actafish.2024.12.1.12-22

Google Scholar

[6] J. Kim, S. Lee, Y. Choi, S. Lee and D. Jeong, Basic Principles and Practical Applications of the Cahn-Hilliard Equation, Mathematical Problems in Engineering (2016).

DOI: 10.1155/2016/9532608

Google Scholar

[7] Y. Li, C. Lee, J. Wang, S. Yoon, J. Park and J. Kim, A Simple Benchmark Problem for the Numerical Methods of the Cahn-Hilliard Equation, Discrete Dynamics in Nature and Society (2021).

DOI: 10.1155/2021/8889603

Google Scholar

[8] H. Liu, A. Cheng, H. Wang and J. Zhao, Time-fractional Allen-Cahn and Cahn-Hilliard phasefield models and their numerical investigation, Computers & Mathematics with Applications (2018).

DOI: 10.1016/j.camwa.2018.07.036

Google Scholar

[9] D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, second ed., Chapman & Hall, 1992.

Google Scholar

[10] M. Caprais, O. Shviro, U. Pensec and H. Zeyen, Application of the heat equation to the study of underground temperature (2024).

DOI: 10.1119/5.0196139

Google Scholar

[11] D. Lee, J. Huh, D. Jeong, J. Shin, A. Yun and J. Kim, Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation, Computational Materials Science (2014).

DOI: 10.1016/j.commatsci.2013.08.027

Google Scholar