First Principles Study on the Point Defects of Compound FeMnP0.67Si0.33

Article Preview

Abstract:

This study is based on the density functional theory and employs the projected augmented wave method within the VASP program package. It investigates the variation of lattice constants in Fe2P-type compound FeMnP0.67Si0.33 in the ferromagnetic (FM) and antiferromagnetic (AFM) states, with the presence of Mn and Fe vacancy defects and Mn and Fe anti-site defects. the defect formation enthalpy of compounds containing vacancy and substitution defects were calculated using the Wagner-Schottky point defect thermodynamic model. It also investigates the relationship between the equilibrium concentration of point defects and the Mn content in the compound, as well as the variation of defect equilibrium concentration with temperature T. The calculation results show that the presence of point defects in the compound affects the lattice constants. In the FM and AFM states, the formation enthalpies of Fe anti-site and Mn anti-site defects is lower than that of Fe vacancy and Mn vacancy defects. The concentration of point defects increases with increasing temperature. The calculated results provide valuable theoretical references for the experimental preparation, defect analysis, and mechanical properties improvement of the Fe2P-type iron-manganese-based FeMnP0.67Si0.33 compound.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-154

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gschneidner K A Jr, Pecharsky V K, Tsokol A O, Recent developments in magnetocaloric materials, Rep. Prog. Phys, 68 (2005) 1479-1539.

DOI: 10.1088/0034-4885/68/6/r04

Google Scholar

[2] Bruck E, Tegus O, Thanh D T C, Buschow K H J,Magnetocaloric refrigeration near room temperature (invited), J. Magn. Magn. Mater. 310(2007) 2793-2799.

DOI: 10.1016/j.jmmm.2006.10.1146

Google Scholar

[3] Li G J, Li W, Stephan S, Li X Q, Delczeg-Czirjak E.K, Yaroslav O.K, Olle E, Börje J, Levente V, Kinetic arrest induced antiferromagnetic order in hexagonal FeMnP0.75Si0.25 alloy, Appl. Phys. Lett.105 (2014) 262405.

DOI: 10.1063/1.4905270

Google Scholar

[4] Annaorazov M P, Nikitin S A, Tyurin A L, Asatryan K A, Dovletvo A K, Anomalously high entropy change in FeRh alloy, J. Appl. Phys.79 (1996) 1689.

DOI: 10.1063/1.360955

Google Scholar

[5] Pecharsky V K, Gschneidner K A Jr, Giant Magnetocaloric Effect in Gd5(Si2Ge2),Phys. Rev. Lett.78(1997) 4494-4497.

DOI: 10.1016/s0304-8853(96)00759-7

Google Scholar

[6] Fujita A, Fujieda S, Hasegawa Y, Fukamichi K, Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)3 compounds and their hydrides, Phys. Rev. B 67 (2003) 104416.

DOI: 10.1063/1.1498148

Google Scholar

[7] Hai X Y, Mayer C, Colin C V, Miraglia S,In-situ neutron investigation of hydrogen absorption kinetics in La(FexSi1-x)3 magnetocaloric alloys for room-temperature refrigeration application, J. Magn. Magn. Mater. 400 (2016) 344-348.

DOI: 10.1016/j.jmmm.2015.07.018

Google Scholar

[8] Tegus O, Bruck E, Buschow K H J, de Boer F R, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature. 415 (2002) 150-152.

DOI: 10.1038/415150a

Google Scholar

[9] Nguyen H. Dung , Zhi Qiang Ou , Luana Caron , Lian Zhang , Dinh T. Cam Thanh , Gilles A. de Wijs, Rob A. de Groot, K. H. Jürgen Buschow and Ekkes Brück, Mixed Magnetism for Refrigeration and Energy Conversion, Advanced Energy Materials 1 (2011) 1215-1219.

DOI: 10.1002/aenm.201100252

Google Scholar

[10] Kudryavtsev Y V, Uvarov N.V, Iermolenko V N, Glavatskyy I N, Dubowik J,Electronic structure, magnetic and optical properties of Heusler alloy, Acta Mater 60 (2012) 4780-4786.

DOI: 10.1016/j.actamat.2012.05.031

Google Scholar

[11] Guillou F, Ollefs K, Wilhelm F, Rogalev A, Electronic and magnetic properties of phosphorus across the first-order ferromagnetic transition of (Mn,Fe)2(P,Si,B) giant magnetocaloric materials, Phys. Rev. B 92 (2015) 224427.

DOI: 10.1103/physrevb.92.224427

Google Scholar

[12] F. Guillou, Sun-Liting, O. Haschuluu, Z.Q. Ou, E. Brück, O. Tegus, H. Yibole, Room temperature magnetic anisotropy in Fe2P-type transition metal based alloys, J. Alloys Compd. 800 (2019) 403-411.

DOI: 10.1016/j.jallcom.2019.05.327

Google Scholar

[13] Z.Q.Ou, N.H. Dung, L.Zhang, L.Caron, E.Torun, N.H.van Dijk, O.Tegus,E.Bruck, Transition metal substitution in Fe2P-based MnFe0.95P0.50Si0.50 magnetocaloric compounds, Journal of Alloys and Compounds,  J. Alloys Compd. 730 (2018)392-398.

DOI: 10.1016/j.jallcom.2017.09.315

Google Scholar

[14] Yingjie L, B Huliyageqi, W Haschaolu, ZhiqiangSong, O Tegus, IkuoNakai, EXAFS study of Mn1.28Fe0.67P0.46Si0.54 compound with first-order phase transition, J. Electron. Spectrosc. relat. phenom. 46212(2014) 104-109.

DOI: 10.1016/j.elspec.2013.12.006

Google Scholar

[15] Shuang Ma, B.Wurentuya, Xiaoxia Wu,Yongjing Jiang, O.Tegus,Pengfei Guan, and B.Narsu , Ab initio mechanical and thermal properties of FeMnP1-xGax compounds as refrigerant for room-temperature magnetic refrigeration, RSC Adv. 7 (2017)27454-27463.

DOI: 10.1039/c7ra04274d

Google Scholar

[16] B. Wurentuya,M.Shuang,B. Narsu,O.Tegus,Zhidong Zhang, Lattice Dynamics of FeMnP0.5Si0.5 Compound from First Principles Calculation, J. Mater. Sci. Technol. 35(1) (2019) 127-133.

DOI: 10.1016/j.jmst.2018.09.009

Google Scholar

[17] Roy P, Torun E, de Groot R A, Effect of doping and elastic properties in (Mn,Fe)2(Si,P), Phys. Rev. B 93 (2016) 094110.

Google Scholar

[18] Chao Jiang, B.P. Uberuaga, S.G. Srinivasan, Point defect thermodynamics and diffusion in Fe3C: A first-principles study, Acta Mater. 56 (2008) 3236-3244.

DOI: 10.1016/j.actamat.2008.03.012

Google Scholar

[19] C. Jiang, D.J. Sordelet, B. Gleeson, Site preference of ternary alloying elements in Ni3Al: A first-principles study, Acta Mater. 54 (2006) 1147-1154.

DOI: 10.1016/j.actamat.2005.10.039

Google Scholar

[20] Chao Jiang, First-principles study of site occupancy of dilute 3d, 4d and 5d transition metal solutes in L10-TiAl. Acta Mater. 56 (2008) 6224-6231.

DOI: 10.1016/j.actamat.2008.08.047

Google Scholar

[21] Huijin TAO, Shan ZHOU, Yu LIU, Jian YIN, Hao XU. Point Defect Concentrations and Interactions in D019-Ti3Al from First-Principles Calculations[J]. Acta Metall Sin, 53 (6) (2017,): 751-759.

Google Scholar