Effect of Surface Layer on Young’s Modulus of Ultrathin Nanofilms: A Theoretical Model

Article Preview

Abstract:

The existing discrepancy between theoretical models and experimental results in describing the elastic properties of ultra-thin nanofilms (less than 10 nm) is primarily attributed to the oversight of the surface layer thickness impact. To address this, a new model incorporating a surface layer with thickness is proposed in this article. Utilizing a layered model, the Young’s modulus of nanofilms approaches that of bulk materials as the film thickness becomes infinitely large, equating to the Young’s modulus of the bulk material in both layered and unlayered models. The dimensional unit of the surface elastic coefficient in the layered model differs from that of the unlayered model, approximately by the thickness of the film. Numerically, the former is more than double the latter. Predictions using the layered model for ultra-thin films comprising only two surface layers reveal a hardening effect in materials such as Si, Ge, InAs, and GaAs. The increase in Young’s modulus for these materials is 20.81%, 95.28%, 79.03%, and 84.04%, respectively, compared to their bulk counterparts. Moreover, a continuous increase in the Young’s modulus is observed as the thickness further decreases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-174

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Eom, K., Park, H.S., Yoon, D. S., Kwon, T., Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles. Physics Reports, 503.4-5 (2011) 115-163.

DOI: 10.1016/j.physrep.2011.03.002

Google Scholar

[2] A. Boisen, S. Dohn, S.S. Keller, S. Schmid, M. Tenje, Cantilever-like micromechanical sensors. Reports on Progress in Physics, 74.3 (2011) 036101.

DOI: 10.1088/0034-4885/74/3/036101

Google Scholar

[3] J. Mei, L. Li, Frequency self-tuning of carbon nanotube resonator with application in mass sensors. Sensors and Actuators B: Chemical, 188 (2013) 661-668.

DOI: 10.1016/j.snb.2013.07.030

Google Scholar

[4] E. P. M. Amorim, E. Z. da Silva, Helical Gold Nanowires Make Longer Linear Atomic Chains, Phys. Rev. Lett. 101 (2008) 125502.

DOI: 10.1103/physrevlett.101.125502

Google Scholar

[5] Q. F. Gu, G. Krauss, F. Gramm, A. Cervellino, W. Steurer, Unexpected High Stiffness of Ag and Au Nanoparticles, Phys. Rev. Lett. 100 (2008) 045502.

DOI: 10.1103/physrevlett.100.045502

Google Scholar

[6] M. Lebrat, S. Häusler, P. Fabritius, D. Husmann, L. Corman, T. Esslinger, Quantized Conductance through a Spin-Selective Atomic Point Contact, Phys. Rev. Lett. 123 (2019) 193605.

DOI: 10.1103/physrevlett.123.193605

Google Scholar

[7] J. Zhang, M. Tomitori, T. Arai, Y. Oshima, Surface Effect on Young's Modulus of Sub-Two-Nanometer Gold [111] Nanocontacts. Phys. Rev. Lett. 128 (2022) 146101-14.

DOI: 10.1103/physrevlett.128.146101

Google Scholar

[8] S. D. Bennett, J. Maassen, A. A. Clerk, Scattering Approach to Backaction in Coherent Nanoelectromechanical Systems, Phys. Rev. Lett. 105 (2010) 217206.

DOI: 10.1103/physrevlett.106.199902

Google Scholar

[9] X. Li, T. Ono, Y. Wang, M. Esashi, Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young's modulus, Appl. Phys. Lett. 83 (2003) 3081.

DOI: 10.1063/1.1618369

Google Scholar

[10] C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. J. Yan, Size Dependence of Young's Modulus in ZnO Nanowires, Phys. Rev. Lett. 96 (2006) 075505.

DOI: 10.1103/physrevlett.96.075505

Google Scholar

[11] A. Sánchez-Iglesias, B. Rivas-Murias, M. Grzelczak, J. Pérez-Juste, L. M. Liz-Marzán, F. Rivadulla, M.A. Correa-Duarte, Highly transparent and conductive films of densely aligned ultrathin Au nanowire monolayers, Nano Lett. 12 (2012) 6066.

DOI: 10.1021/nl3021522

Google Scholar

[12] S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires, Nat. Commun. 5 (2014) 3132.

DOI: 10.1038/ncomms4132

Google Scholar

[13] R.E. Miller, V. B. Shenoy, Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11.3 (2000) 139.

DOI: 10.1088/0957-4484/11/3/301

Google Scholar

[14] M.E. Gurtin, A. Ian Murdoch, A continuum theory of elastic material surfaces. Archive for rational mechanics and analysis, 57 (1975) 291-323.

DOI: 10.1007/bf00261375

Google Scholar

[15] M.E. Gurtin, A.I. Murdoch, Surface stress in solids. International journal of Solids and Structures, 14.6 (1978) 431-440.

DOI: 10.1016/0020-7683(78)90008-2

Google Scholar

[16] J. F. Nye, John Frederick. Physical properties of crystals: their representation by tensors and matrices. Oxford university press, 1985.

Google Scholar

[17] N. W. Ashcroft, N. D. Mermin. Solid State Physics (HRW Internat. ed.), 1987.

Google Scholar

[18] D. Sander, The correlation between mechanical stress and magnetic anisotropy in ultrathin films, Reports on Progress in Physics 62.5 (1999) 809.

DOI: 10.1088/0034-4885/62/5/204

Google Scholar

[19] M. Liu, F. Liu, Quantum manifestation of elastic constants in nanofilms. Nanotechnology, 25.13 (2014) 135706.

DOI: 10.1088/0957-4484/25/13/135706

Google Scholar

[20] M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Asta, Charting the complete elastic properties of inorganic crystalline compounds. Scientific data, 2.1 (2015)1-13.

DOI: 10.1038/sdata.2015.9

Google Scholar

[21] C. Deneke, C. Müller, N.Y. Phillipp, O.G. Schmidt, Diameter scalability of rolled-up In (Ga) As/GaAs nanotubes. Semiconductor science and technology, 17.12 (2002), 1278.

DOI: 10.1088/0268-1242/17/12/312

Google Scholar