Flame Front Model with the Clusters Condensation

Article Preview

Abstract:

The processes model in a flame during the n-alkanes air mixture combustion initiation is proposed, taking into account the supramolecular structures formation possibility in the peroxide clusters form. This approach is justified by the n-alkanes melting temperatures correlation with their autoignition temperatures and anti-knock indexes. The condensation possibility is provided for such high molecular structures. Boiling temperatures values at flame front pressures characteristic were evaluated. To predict the peroxide clusters melting temperatures, a formula developed earlier for the hydrocarbons condensed state was used, which takes into account the length and molecular weight of modeled clusters. Expected peroxide clusters melting temperatures were predicted for conditions of dimeric and tetrameric structures. A linear dependence was used to recalculation the obtained values in boiling temperatures. It is shown that the calculated clusters phase transitions characteristic temperatures can be realized in the flame front preparatory zone. Based on the condensation theory, the flame front thickness and the minimum non-extinguishing sphere radius during ignition were estimated: the obtained data closely coincide with these parameters known values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-48

Citation:

Online since:

October 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Glassman, R.A. Yetter, Combustion, London, Elsevier, (2014).

Google Scholar

[2] S.S. Kaim, S.D. Kaim, R. Rojek, Mechanism of "Hot Points" Generation in Fronts of Detonation Waves in Condensed Energetic Materials, Nanosystems. Nanomaterials. Nanotechnologies, 7(4) (2009) 1201–1226.

Google Scholar

[3] S.D. Kaim, Nano Gas dynamics of gas and dust emissions in coal mines, Nanosystems. Nanomaterials. Nanotechnologies, 10(3) (2012) 609–628.

Google Scholar

[4] O. Zavialova, M. Grygorian, V. Kostenko, N. Liashok, T. Kostenko, V. Pokaliuk, Theoretical basis for the formation of damaging factors during the coal aerosol explosion, Mining of Mineral Deposits, 15/4 (2021) 130–138.

DOI: 10.33271/mining15.04.130

Google Scholar

[5] H. Zhu, K. Sheng, Y. Zhang, S. Fang, Y. Wu. The stage analysis and countermeasures of coal spontaneous combustion based on "five stages" division, PLoS One, 13(8) (2018) e0202724.

DOI: 10.1371/journal.pone.0202724

Google Scholar

[6] A. Yaxin, K. B. Karteek, A.D. Sanket, Development of New Transferable Coarse-Grained Models of Hydrocarbons, J. Phys. Chem., 122(28) (2018) 7143–7153.

DOI: 10.1021/acs.jpcb.8b03822

Google Scholar

[7] N. Gaston, Cluster melting: new, limiting, and liminal phenomena, Adv. Phys., 3(1) (2018) 1401487.

DOI: 10.1080/23746149.2017.1401487

Google Scholar

[8] Yu. Hapon, D. Tregubov, E. Slepuzhnikov, V. Lypovyi, Cluster Structure Control of Coatings by Electrochemical Coprecipitation of Metals to Obtain Target Technological Properties, Solid State Phenomena, 334 (2022) 70–76.

DOI: 10.4028/p-4ws8gz

Google Scholar

[9] Z. Li, H.T. Chen, K. Schouteden, T. Picot, T.-W. Liao, A. Seliverstov, C. Van Haesendonck, G. Pacchioni, E. Janssens, P. Lievens, Unraveling the atomic structure, ripening behavior, and electronic structure of supported Au20 clusters, Sci. Adv., 6(1) (2020) eaay4289.

DOI: 10.1126/sciadv.aay4289

Google Scholar

[10] A.S. Olson, A.J. Jameson, S.K. Kyasa, B.W. Evans, P.H. Dussault, Reductive Cleavage of Organic Peroxides by Iron Salts and Thiols, ACS omega, 3(10) (2018) 14054–14063.

DOI: 10.1021/acsomega.8b01977

Google Scholar

[11] J.E. House, Inorganic Chemistry, California, Elsevier (2010).

Google Scholar

[12] D. Tregubov, O. Tarakhno, V. Deineka, F. Trehubova, Oscillation and Stepwise of Hydrocarbon Melting Temperatures as a Marker of their Cluster Structure, Solid State Phenomena, 334 (2022) 124–130.

DOI: 10.4028/p-3751s3

Google Scholar

[13] Quickly find chemical information from authoritative sources, Pubchem, U.S. National Library of Medicine. Information on https://pubchem.ncbi.nlm.nih.gov/

Google Scholar

[14] D. Tregubov, I. Dadashov, V. Nuianzin, O. Khrystych, N. Minska, Relationship Between Properties of Floating Systems and Flammable Liquids in the Stopping Their Burning Technology, Key Engineering Materials, 954 (2023) 145–155.

DOI: 10.4028/p-krzrd9

Google Scholar

[15] D. Tregubov, E. Slepuzhnikov, M. Chyrkina, A. Maiboroda, Cluster Mechanism of the Explosive Processes Initiation in the Matter, Key Engineering Materials, 952 (2023) 131–142.

DOI: 10.4028/p-lzz2hq

Google Scholar

[16] R. Meyer, J. Köhler, A. Homberg, Explosives, Weinheim, Wiley-VCH, (2016).

Google Scholar

[17] D. Tregubov, O. Tarakhno, D. Sokolov, F. Tregubova, The oscillation of n-alkanes characteristic temperatures under the action the cluster structure of substance, Problems of emergency situations, 32 (2020) 14–30.

Google Scholar

[18] Search for Species Data by Chemical Name, NIST Chemistry WebBook, U.S. Department of Commerce.

Google Scholar

[19] D. Tregubov, N. Minska, E. Slepuzhnikov, Yu. Hapon, D. Sokolov. Substances explosive properties formation. Problems of Emergency Situations, 36 (2022) 41–53.

DOI: 10.52363/2524-0226-2022-36-4

Google Scholar

[20] The Engineering ToolBox. Hydrocarbons – Autoignition Temperatures and Flash Points. Information on https://www.engineeringtoolbox.com/flash-point-autoignition-temperature-kindling-hydrocarbons-alkane-alkene-d_1941.html.

Google Scholar

[21] M. Salinga, E. Carria, A. Kaldenbach, M. Bornhöfft, J. Benke, J. Mayer, M. Wuttig, Measurement of crystal growth velocity in a melt-quenched phase-change material, Nat Commun., 4 (2013) 2371.

DOI: 10.1038/ncomms3371

Google Scholar

[22] R. Rosa, P. Veronesi, C. Leonelli, Use of combustion synthesis / self-propagating high- temperature synthesis (SHS) for the joining of similar/dissimilar materials, Woodhead Publishing Reviews: Mechanical Engineering Series, (2022) 63–79.

DOI: 10.1016/b978-0-323-85399-6.00013-8

Google Scholar

[23] B. Pospelov, V. Andronov, E. Rybka, V. Popov, A. Romin, Experimental study of the fluctuations of gas medium parameters as early signs of fire, Eastern-European Journal of Enterprise Technologies, 1(10–91) (2018) 50–55.

DOI: 10.15587/1729-4061.2018.122419

Google Scholar

[24] B. Pospelov, V. Andronov, E. Rybka, R. Meleshchenko, S. Gornostal, Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials, Eastern-European Journal of Enterprise Technologies, 5(10) (2018) 25–30.

DOI: 10.15587/1729-4061.2018.142995

Google Scholar

[25] R. K. Sharma, A violent, episodic vapour cloud explosion assessment: Deflagration-to-detonation transition, Journal of Loss Prevention in the Process Industries, 65 (2020) 104086.

DOI: 10.1016/j.jlp.2020.104086

Google Scholar

[26] K. Korytchenko, P. Krivosheyev, D. Dubinin, A. Lisniak, K. Afanasenko, S. Harbuz, O. Buskin, A. Nikorchuk, I. Tsebriuk, Experimental research into the influence of two­spark ignition on the deflagration to detonation transition process in a detonation tube, East.-European J. of Enterprise Technol., 4 (2019) 26–31.

DOI: 10.15587/1729-4061.2019.175333

Google Scholar

[27] K. Korytchenko, A. Ozerov, D. Vinnikov, Y. Skob, D. Dubinin, R. Meleshchenko, Numerical simulation of influence of the non-equilibrium excitation of molecules on direct detonation initiation by spark discharge, Problems of Atomic Science and Technology, 4(116) (2018) 194–199.

DOI: 10.46813/2021-134-171

Google Scholar

[28] K. Korytchenko, O. Sakun, Y. Khilko, D. Dubinin, E. Slepuzhnikov, A. Nikorchuk, I. Tsebriuk, Experimental investigation of the fireextinguishing system with a gasdetonation charge for fluid acceleration. Eastern-European Journal of Enterprise Technologies, 3(9–93) (2018), 47–54.

DOI: 10.15587/1729-4061.2018.134193

Google Scholar

[29] B. Pospelov, V. Andronov, E. Rybka, R. Meleshchenko, P. Borodych, Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3(9–93) (2018), 34–40.

DOI: 10.15587/1729-4061.2018.133127

Google Scholar

[30] B. Pospelov, V. Andronov, E. Rybka, V. Popov, O. Semkiv, Development of the method of frequencytemporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2(10–92) (2018) 44–49.

DOI: 10.15587/1729-4061.2018.125926

Google Scholar

[31] B. Pospelov, E. Rybka, R. Meleshchenko, S. Gornostal, S. Shcherbak, Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6(10–90) (2017) 50–56.

DOI: 10.15587/1729-4061.2017.117789

Google Scholar

[32] K. Mygalenko, V. Nuyanzin, A. Zemlianskyi, A. Dominik, S. Pozdieiev, Development of the technique for restricting the propagation of fire in natural peat ecosystems, Eastern-European Journal of Enterprise Technologies, 1/10(91) (2018) 31–37.

DOI: 10.15587/1729-4061.2018.121727

Google Scholar

[33] D. Dubinin, K. Korytchenko, A. Lisniak, I. Hrytsyna, V. Trigub, Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge, Eastern-European Journal of Enterprise Technologies, 6/10(90) (2017) 11–16.

DOI: 10.15587/1729-4061.2017.114504

Google Scholar

[34] B. Pospelov, V. Andronov, E. Rybka, S. Skliarov, Research into dynamics of setting the threshold and a probability of ignition detection by selfadjusting fire detectors, Eastern-European Journal of Enterprise Technologies, 5/9(89) (2017) 43–48.

DOI: 10.15587/1729-4061.2017.110092

Google Scholar

[35] B. Pospelov at al, Development of the correlation method for operative detection of recurrent states, Eastern-European Journal of Enterprise Technologies, 6/4 (102) (2019) 39–46.

Google Scholar

[36] A. Teslenko at al, Construction of an algorithm for building regions of questionable decisions for devices containing gases in a linear multidimensional space of hazardous factors, Eastern-European Journal of Enterprise Technologies, 5/10(101) (2019) 42–49.

DOI: 10.15587/1729-4061.2019.181668

Google Scholar

[37] A. Chernukha, A. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical modeling of fire-proof efficiency of coatings based on silicate composition, Materials Science Forum, 1006 (2020) 70–75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar