Modelling the Non-Isothermal Flow of a Nanofluid in a Lid-Driven Cavity from the Perspective of Irreversibility Analysis

Article Preview

Abstract:

This article examines laminar mixed convection of a nanofluid within a square cavity that contains a vertical rectangular obstacle serving as a vortex promoter. Employing Buongiorno's theory, the dimensionless governing equations are numerically solved using the finite element method to analyze the distributions of velocity, temperature, nanoparticle concentration, and entropy generation. Attention is paid to the entropy generation. Results are presented and discussed, showing that increasing the Reynolds number generates a large vortex near the obstacle, which diminishes reverse flow, enhances heat conduction, and increases entropy generation. Moreover, thermophoresis drives tiny nanoparticles from hot to cold regions, affecting heat transfer. Indeed, nanoparticle concentration decreases with higher thermophoresis (NT) and Brownian motion (NB) constraints, as these parameters are inversely related to the concentration profile.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-22

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Buongiorno, Convective transport in nanofluids, J. Heat Transf. 128, 240–250 (2006)

DOI: 10.1115/1.2150834

Google Scholar

[2] Y. Ma, R. Mohebbi, M.M. Rashid, Z. Yang, Z. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method, Phys. Fluids 30, 032001 (2018)

DOI: 10.1063/1.5022060

Google Scholar

[3] E. Rossi di Schio, M. Celli, A. Barletta. Effects of Brownian Diffusion and Thermophoresis on the Laminar Forced Convection of a Nanofluid in a Channel, J. Heat Transf. 136, 022401 (2014)

DOI: 10.1115/1.4025376

Google Scholar

[4] Z. Mehrez, M. Bouterra, A. El Cafsi, A. Belghith, Heat transfer and entropy generation analysis of nanofluids flow in an open cavity, Comput. Fluids 88, 363–373 (2013)

DOI: 10.1016/j.compfluid.2013.09.026

Google Scholar

[5] A. Barletta, E. Rossi di Schio, M. Celli, Convection and instability phenomena in nano-fluid-saturated porous media. Heat Transfer Enhancement with Nanofluids, CRC Press, Boca Raton, FL, 341-364 (2015).

DOI: 10.1201/b18324-15

Google Scholar

[6] H. Nemati, M. Farhadi, K. Sedighi, E. Fattahi, E., A.A.R. Darzi, Lattice Boltzmann simulation of nanofluid in lid-driven cavity, Int. Commun. Heat Mass Transf. 37(10), 1528-1534 (2010)

DOI: 10.1016/j.icheatmasstransfer.2010.08.004

Google Scholar

[7] E. Rossi di Schio, A.N. Impiombato, A. Mokhefi, C. Biserni, Theoretical and Numerical Study on Buongiorno's Model with a Couette Flow of a Nanofluid in a Channel with an Embedded Cavity, Appl. Sci. 12(15), 7751 (2022)

DOI: 10.3390/app12157751

Google Scholar

[8] L. Yang, K. Du, A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities, J. Therm. Anal. Calorim 140, 2033-2054 (2020)

DOI: 10.1007/s10973-019-08987-y

Google Scholar

[9] G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution. International Journal for numerical methods in fluids 3, 249-264 (1983).

DOI: 10.1002/fld.1650030305

Google Scholar

[10] Y.S. Tian, T.G. Karayiannis, Low turbulence natural convection in an air-filled square cavity: part I: the thermal and fuid fow felds. Int J Heat Mass Transf. 43(6), 849–66 (2000).

DOI: 10.1016/s0017-9310(99)00199-4

Google Scholar

[11] A.A. Hussein, W. Al-Kouz, M. El Hassan, A.A. Janvekar, A.J. Chamkha, A review of flow and heat transfer in cavities and their applications. The European Physical Journal Plus, 136(4), 353 (2021).

DOI: 10.1140/epjp/s13360-021-01320-3

Google Scholar

[12] S. Rostami, S. Aghakhani, A. Hajatzadeh Pordanjani, M. Afrand, G. Cheraghian, H.F. Oztop, M.S. Shadloo, A review on the control parameters of natural convection in different shaped cavities with and without nanofluid. Processes, 8(9), 1011, (2020).

DOI: 10.3390/pr8091011

Google Scholar

[13] A. Mokhefi, E. Rossi di Schio, P. Valdiserri, C. Biserni, Influence of Nanoparticles and Magnetic Field on the Laminar Forced Convection in a Duct Containing an Elastic Fin. WSEAS Transactions on Heat and Mass Transfer 18, 69-83, (2023)

DOI: 10.37394/232012.2023.18.7

Google Scholar

[14] P. Singh, M. Kumar, Mass transfer in MHD flow of alumina water nanofluid over a flat plate under slip conditions. Alexandria Engineering Journal 54(3), 383-387, 2015.

DOI: 10.1016/j.aej.2015.04.005

Google Scholar