An Investigation of Pedestrian Dynamics Based on Fluid Mechanics Dimensionless Numbers

Article Preview

Abstract:

The study of pedestrian dynamics, both individually and in groups, has been a highly active field for the last few decades. Dimensionless numbers in fluid dynamics are used to characterize flow patterns, identify the dominant forces, and predict results. Here, we argue that these dimensionless numbers can be also relevant to obtaining basic features of pedestrian dynamics. In this study, pedestrians moving freely and in an environment with other pedestrians are analyzed using dimensionless numbers. The development of a comfortable walking speed, the range of velocities that characterize walking and running forms of human gait, and the impact of pedestrian density on pedestrian speed are all investigated. Another important feature studied is the self-organization of a group of individuals, which is a vital concept in understanding crowd dynamics. Crowd dynamics and the interactions with other pedestrians are also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-82

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.P. E Kachroo, S.A. Wadoo, S.J. Al-Nasur, A. Shende, Pedestrian Dynamics Feedback Control of Crowd Evacuation (Springer, 2008)

DOI: 10.1007/978-3-540-75561-6_11

Google Scholar

[2] R.M. Alexander, Principles of Animal Locomotion (University Press Princeton, 2003)

Google Scholar

[3] A.F. Miguel, Physics of Life Reviews. 10 (2013) 168–190.

Google Scholar

[4] C.R. Lee, C. T. Farley, Journal of Experimental Biology. 201 (1998) 2935–2944.

Google Scholar

[5] C.E. Carr, J. McGee, PLoS One. 4 (2009) e6614

Google Scholar

[6] P.E. Roos, J. B. Dingwel, Human Movement Science. 32 (2013) 984–996

Google Scholar

[7] J. Cham, J.K. Karpick, M.R. Cutkosky, International Journal of Robotics Research. 23 (2004) 141–153.

Google Scholar

[8] A.F. Miguel, A. Bejan, Physica A: Statistical Mechanics and its Applications. 388 (2009) 727–731.

Google Scholar

[9] L.F. Henderson, D. M. Jenkins, Transportation Research. 8 (1974) 71–74.

Google Scholar

[10] D. Helbing, P. Molnar, Physical Review E. 51 (1995) 4282–4286.

Google Scholar

[11] A. Seyfried, B. Steffen, W. Klingsch, M. Boltes, Journal of Statistical Mechanics. 10 (2005) P10002.

DOI: 10.1088/1742-5468/2005/10/p10002

Google Scholar

[12] A.F. Miguel, Physics of Life Reviews. 10 (2013) 206–209.

Google Scholar

[13] D. Helbing, L. Buzna, A. Johansson, T. Werner, Transportation Science. 39 (2005) 1–24.

Google Scholar

[14] A. Kirchner, K. Nishinari, A. Schadschneider, Physical Review E. 67 (2003) 056122.

Google Scholar

[15] A.F. Miguel, Constructal patterns formation in nature, pedestrian motion and epidemics propagation, in: Constructal Theory of Social Dynamics, p.85–114 (Springer, 2007).

DOI: 10.1007/978-0-387-47681-0_5

Google Scholar

[16] D.L. Katz, Medical Clinics of North America. 88 (2004) 1295–1320.

Google Scholar

[17] M. Ohrstrom, J. Hedenbro, M Ekelund, European Journal of Surgery. 167 (2001) 845–850.

Google Scholar

[18] E.L. Melanson, M.L. Bell, J.R, Knoll, L.B. Coelho, W. Donahoo, J.C. Peters, J.O. Hill, Medicine and Science in Sports and Exercise. 35 (2003) S183.

DOI: 10.1097/00005768-200305001-01016

Google Scholar

[19] R.C. Browning, R. Kram, Obesity. 13 (2005) 891–899.

Google Scholar

[20] M. Schimpl, C. Moore, C. Lederer, A. Neuhaus, J. Sambrook, J. Danesh, W. Ouwehand, M. Daumer, PLoS One. 6 (2011) e23299.

DOI: 10.1371/journal.pone.0023299

Google Scholar

[21] C. M. Wall-Scheffler, Journal of Anthropology. 1 (2012) 1–9.

Google Scholar

[22] R. W. Bohannon, Age Ageing. 26 (1997)15–19.

Google Scholar

[23] A. Ble, S. Volpato, G. Zuliana, J.M. Guralnik, S. Bandinelli, F. Lauretani, B. Bartali, C. Maraldi, R. Fellin, L. Ferrucci, Journal of the American Geriatrics Society. 53 (2005) 410–415.

DOI: 10.1111/j.1532-5415.2005.53157.x

Google Scholar

[24] A. Bejan, J. H. Marden, Journal of Experimental Biology. 209 (2006) 238–248.

Google Scholar

[25] J.E. Bertram, A. Ruina, Journal of Theoretical Biology. 209 (2001) 445–453.

Google Scholar

[26] C.T. Farley, T. A. McMahon, Journal of Applied Physiology. 73 (1992) 2709–2712.

Google Scholar

[27] R. Kram, A. Domingo, D. P. Ferris, Journal of Experimental Biology. 200 (1997) 821–826.

Google Scholar

[28] A. Seyfried, B. Steffen, W. Klingsch, T. Lippert, M. Boltes, Steps toward the fundamental diagram – empirical results and modelling, in: Traffic and Granular Flow´05, p.357–362 (Springer, 2007)

DOI: 10.1007/978-3-540-47641-2_26

Google Scholar

[29] A.F. Miguel, Physics Letters A. 373 (2009) 1734–1738.

Google Scholar

[30] A. Lloyd, M. Somerville, Journal of Workplace Learning. 18 (2006) 186–198.

Google Scholar

[31] A.F. Miguel, International Journal of Design & Nature and Ecodynamics. 5 (2010) 230–241

Google Scholar

[32] A. Jelic, C. Appert-Rolland, S. Lemercier, J. Pettré, Physical Review E. 86 (2012) 04611.

Google Scholar

[33] A.F. Miguel, Physics of Life Review. 18 (2016) 37–39.

Google Scholar

[34] A.F. Miguel, Journal of Theoretical Biology. 242 (2006) 954–961.

Google Scholar

[35] A. Bejan, Shape and Structure from Engineering to Nature (Cambridge University Press, 2000).

Google Scholar

[36] A.F. Miguel, Defect and Diffusion Forum. 407 (2021) 59–67.

Google Scholar