[1]
E. Marin, F. Boschetto, and G. Pezzotti, Biomaterials, and biocompatibility: An historical overview, J.Biomed Mater Res A. 108-8 (2020) 1617–1633
DOI: 10.1002/jbm.a.36930
Google Scholar
[2]
F. Aguilar, Biocompatibility of new Calcium Aluminate Cement (EndoBinder), J Endod. 38-3 (2012) 367–371
DOI: 10.1016/j.joen.2011.11.002
Google Scholar
[3]
A. Aramian, Z. Sadeghian, M. Narimani, N. Razavi, and F. Berto, A review on the microstructure and properties of TiC and Ti(C,N) based cermets, Int J Refract Metals Hard Mater. 115 (2023)106.
DOI: 10.1016/j.ijrmhm.2023.106320
Google Scholar
[4]
A. Saens, Biomateriales, Tecnología en marcha. 34-3(2004) 34–45.
Google Scholar
[5]
A. C. Santo Rosa, Análisis y simulación numérica del proceso de biodegradación por hidrolisis de biopolímeros en aplicaciones biomédicas. Universidad de Sevilla (2013).
Google Scholar
[6]
J. G. Miranda Hernandez, M. Ortega Aviles, H. Herrera Hernandez, C. O. Gonzales Moran, G. Hernandez Pacheco, and E. Rocha Rangel, Refractory Ceramics Synthesis by Solid-State Reaction Between CaCO3 (Mollusk Shell) and Al2O3 Powder, Ceramics-Silikáty. 62-4 (2018) 355–363.
DOI: 10.13168/cs.2018.0031
Google Scholar
[7]
S. G. Gómez de Saravia, S. E. Rastelli, M. Ortega-Avilés, C. O. González-Morán, E. Rocha-Rangel, and J. G. Miranda-Hernández, Physical, mechanical properties, and antimicrobial analysis of a novel CaO·Al2O3 compound reinforced with Al or Ag particles, J Mech Behav Biomed Mater. 97 (2019) 385–395.
DOI: 10.1016/j.jmbbm.2019.05.041
Google Scholar
[8]
J. G. Miranda-Hernández, C. O. González-Morán, H. Herrera-Hernández, E. H. Sánchez, J. de J. A. Flores-Cuautle, and M. Ortega-Avilés, Sea snail shells for synthesis of ceramic compounds reinforced with metallic oxide: Microstructural, mechanical, and electrical behavior, Mater Today Commun. 28(2021).
DOI: 10.1016/j.mtcomm.2021.102656
Google Scholar
[9]
I. Halikia, L. Zoumpoulakis, E. Christodoulou, and D. Prattis, Kinetic study of the thermal decomposition of calcium carbonate by isotermal methods of analysis, The European Journal of mineral Processing and Enviromental Protection. 1-2 (2001) 89–102.
Google Scholar
[10]
J. M. Rivas Mercury, A. H. De Aza, and P. Pena, Synthesis of CaAl2O4 from powders: Particle size effect, J Eur Ceram Soc. 25-14 (2005) 3269–3279.
DOI: 10.1016/j.jeurceramsoc.2004.06.021
Google Scholar
[11]
V. K. Pandey, B. P. Patel, and S. Guruprasad, Role of ceramic particulate reinforcements on mechanical properties and fracture behavior of aluminum - based composites, Materials Science and Engineering. 745 (2019) 252–264.
DOI: 10.1016/j.msea.2018.12.030
Google Scholar
[12]
ASTM International, C-1329-03 Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics. Washington, DC. (2024)
Google Scholar
[13]
ASTM International, "E-384, Standart Test Method For Microindentacion Hardness of Materials," Washington USA,DC (2024),.
Google Scholar
[14]
J. G. Miranda-Hernández, J. Vargas-Hernández, H. Casarrubias-Vargas, C. O. González-Morán, E. Refugio-García, and J. de J. A. Flores Cuautle, Synthesis, and effect of CaTiO3 formation in CaO·Al2O3 by solid-state reaction from CaCO3·Al2O3 and Ti, Mater Chem Phys. 232 (2019) 57–64.
DOI: 10.1016/j.matchemphys.2019.04.050
Google Scholar
[15]
J. G. Miranda, Síntesis y Caracterización Mecánica de Materiales Funcionales Oxido-Metal-Nitruro, PhD Thesis , UAM, Ciudad de México, México (2011).
Google Scholar
[16]
M.A. Taha, A.H. Nassar, and M.F. Zawrah, Improvement of wetability, sinterability, mechanical and electrical properties of Al2O3-Ni nanocomposites prepared by mechanical alloying, Ceram Int.43-4 (2017) 3576–3582.
DOI: 10.1016/j.ceramint.2016.11.194
Google Scholar
[17]
A. Diaz, J. M. Perez, and J. Ribera, Sustitos oseos, Rev. S.and Traum. y Ort. 26-1, (2008) 2–13.
Google Scholar
[18]
A. Reddi, S. Weintroub, and Muthukuraman N., Biological principles of bone induction, Orthop Clin North Am. 395(2002) 81–98.
Google Scholar
[19]
I.R. Oliveira, V.C. Pandolfelli, and M. Jacobovitz, Chemical, physical, and mechanical properties of a novel calcium aluminate endodontic cement, Int Endod J, 43-12(2010) 1069–1076.
DOI: 10.1111/j.1365-2591.2010.01770.x
Google Scholar
[20]
S.M. Naga, A.M. Hassan, H.F. El-Maghraby, and M. Awaad, Characterization of physico- mechanical properties of Alumina/YAG/Ceria composites, Ceram Int. 45-2 (2019) 1634–1640.
DOI: 10.1016/j.ceramint.2018.10.040
Google Scholar