[1]
Y. Malmejac, G. Frohberg, Mass Transport by Diffusion, in: H. U. Walter (Eds.), Fluid Sciences and Materials Science in Space, Springer, Berlin, 1987, pp.159-190.
DOI: 10.1007/978-3-642-46613-7_5
Google Scholar
[2]
T. Itami, T. Masaki, H. Aoki, S. Munejiri, M. Uchida, S. Matsumoto, K. Kamiyama, and K. Hoshino, Self-diffusion under microgravity and structure of group IVB liquids, J. Non-Cryst. Solids 312 (2002) 177-181.
DOI: 10.1016/s0022-3093(02)01684-8
Google Scholar
[3]
G. Mathiak, A. Griesche, K.-H. Kraatz, and G. Frohberg, Diffusion in liquid metals, J. Non-Cryst. Solids 205 (1996) 412-416.
DOI: 10.1016/s0022-3093(96)00253-0
Google Scholar
[4]
E. Sondermann, F. Kargl, and A. Meyer, Influence of cross correlations on interdiffusion in Al-rich Al-Ni melts, Phys. Rev. B 93 (2016) 184201.
DOI: 10.1103/physrevb.93.184201
Google Scholar
[5]
E. Sondermann, N. Jakse, K. Binder, A. Mielke, D. Heuskin, F. Kargl, and A. Meyer, Concentration dependence of interdiffusion in aluminum-rich Al-Cu melts, Phys. Rev. B 99 (2019) 024204.
DOI: 10.1103/physrevb.99.024204
Google Scholar
[6]
H. Weis, F. Kargl, M. Kolbe, M. M. Koza, T. Unruh, and A. Meyer, Self- and interdiffusion in dilute liquid germanium-based alloys, J. Condens. Matter Phys. 31 (2019) 455101.
DOI: 10.1088/1361-648x/ab354e
Google Scholar
[7]
J. P. Garandet, G. Mathiak, V. Botton, P. Lehmann, and A. Griesche, Reference microgravity measurements of liquid phase solute diffusivities in tin- and aluminum-based alloys, Int. J. Thermophys. 25 (2004) 249-272.
DOI: 10.1023/b:ijot.0000022338.21866.f9
Google Scholar
[8]
A. Griesche, M.-P. Macht, S. Suzuki, K.-H. Kraatz, and G. Frohberg, Self-diffusion of Pd, Cu and Ni in Pd-based equilibrium melts. Scr. Mater. 57 (2007) 477-480.
DOI: 10.1016/j.scriptamat.2007.05.027
Google Scholar
[9]
S. Suzuki, K.-H. Kraatz, A. Griesche, and G. Frohberg, Shear cell development for diffusion experiments in FOTON-Satellite missions and on the ground with consideration of shear-induced convection, Microgravity Sci. Technol. 16 (2005) 127-132.
DOI: 10.1007/bf02945962
Google Scholar
[10]
S. Suzuki, K.-H. Kraatz, and G. Frohberg, Diffusion experiments in liquid Sn-Bi and Al-Ni systems with a stable density layering using the FOTON shear cell under 1g conditions, Microgravity Sci. Technol. 16 (2005) 120-126.
DOI: 10.1007/bf02945961
Google Scholar
[11]
M. Shiinoki, Y. Nishimura, K. Noboribayashi, and S. Suzuki, Suppressing natural convection for self-diffusion measurement in liquid Pb using shear cell technique by stable density layering of isotopic concentration, Metall. Mater. Trans. B 52 (2021) 3846-3859.
DOI: 10.1007/s11663-021-02300-9
Google Scholar
[12]
G. Mathiak, G. Frohberg, Interdiffusion and convection in high magnetic fields, Cryst. Res. Technol. 34 (1999) 181-188.
DOI: 10.1002/(sici)1521-4079(199902)34:2<181::aid-crat181>3.0.co;2-1
Google Scholar
[13]
V. Botton, P. Lehmann, R. Bolcato, and R. Moreau, Measurement of solute diffusivities. Part III. From solutal convection dominated transport to quasi-diffusive transport, Int. J. Heat Mass Transf. 47 (2004) 2457-2467.
DOI: 10.1016/j.ijheatmasstransfer.2003.10.037
Google Scholar
[14]
F. Onishi, T. Miyake, Y. Inatomi, and K. Kuribayashi, Measurements of interdiffusion coefficients in metallic melts at high temperature under horizontal static magnetic field, Microgravity Sci. Technol. 18 (2006) 86-90.
DOI: 10.1007/bf02870386
Google Scholar
[15]
S. Suzuki, K.-H. Kraatz, and G. Frohberg, Ground-based diffusion experiments on liquid Sn-In systems using the shear cell technique of the satellite mission Foton-M1, Ann. N. Y. Acad. Sci. 1027 (2004) 169-181.
DOI: 10.1196/annals.1324.016
Google Scholar
[16]
S. Yoda, H. Oda, T. Oida, T. Masaki, M. Kaneko, and K. Higashino, Measurement of high accurate diffusion coefficient in melt of semiconductor and metal by using shear cell method, J. Jpn. Soc. Microgravity Appl. 16 (1999) 111-118.
Google Scholar
[17]
Y. Geng, C. Zhu, and B. Zhang, A sliding cell technique for diffusion measurements in liquid metals, AIP Adv. 4 (2014) 037102.
Google Scholar
[18]
B. Zhang, A. Griesche, and A. Meyer, Diffusion in Al-Cu melts studied by time-resolved X-ray radiography, Phys. Rev. Lett. 104 (2010) 035902.
DOI: 10.1103/physrevlett.104.035902
Google Scholar
[19]
A. Griesche, B. Zhang, E. Solórzano, and F. García-Moreno, Note: X-ray radiography for measuring chemical diffusion in metallic melts, Rev. Sci. Instrum. 81 (2010) 056104.
DOI: 10.1063/1.3427256
Google Scholar
[20]
F. Kargl, M. Engelhardt, F. Yang, H. Weis, P. Schmakat, B. Schillinger, A. Griesche, and A. Meyer, In situ studies of mass transport in liquid alloys by means of neutron radiography, J. Condens. Matter Phys. 23 (2011) 254201.
DOI: 10.1088/0953-8984/23/25/254201
Google Scholar
[21]
T. Ujihara, K. Fujiwara, G. Sazaki, N. Usami, and K. Nakajima, Simultaneous in situ measurement of solute and temperature distributions in the alloy solutions, J. Cryst. Growth 242 (2002) 313-320.
DOI: 10.1016/s0022-0248(02)01423-9
Google Scholar
[22]
R. Yamatake, M. Shiinoki, Y. Kobayashi, T. Masaki, and S. Suzuki, Spectral processing and intensity ratio measurement using X-ray fluorescence analysis in liquid alloys, Int. J. Microgravity Sci. Appl. 38 (2021) 380303.
Google Scholar
[23]
T. Masaki, S. Suzuki, Measurement of diffusion coefficients in melts by using an X-ray fluorescence spectroscopy, Sp. Util. Res. 29 (2015) 103-104 (in Japanese).
Google Scholar
[24]
K. Fujita, Y. Shimura, S. Suzuki, and T. Masaki, Feasibility study of in-situ observation of diffusion in liquid metals by using a fluorescent X-ray spectroscopy, Int. J. Microgravity Sci. Appl. 35 (2018) 350404 (in Japanese).
Google Scholar
[25]
Y. Kobayashi, M. Shiinoki, R. Yamatake, T. Masaki, and S. Suzuki, Required diffusion time for in-situ measurement of diffusion coefficients in liquid alloys by X-ray fluorescence analysis, Int. J. Microgravity Sci. Appl. 38 (2021) 380302.
Google Scholar
[26]
Y. Kobayashi, M. Shiinoki, S. Kato, T. Masaki, and S. Suzuki, Elimination of systematic error in diffusion measurement using in-situ X-ray fluorescence analysis for liquid alloys, Int. J. Microgravity Sci. Appl. 40 (2023) 400403.
Google Scholar
[27]
S. Suzuki, K.-H. Kraatz, and G. Frohberg, The effect of shear convection on diffusion measurements in liquid metals using the Foton shear cell, Microgravity Sci. Technol. 18 (2006) 155-159.
DOI: 10.1007/bf02870400
Google Scholar
[28]
M. Shiinoki, N. Hashimoto, H. Fukuda, Y. Ando, and S. Suzuki, Self-diffusion measurements of liquid Sn using the shear cell technique and stable density layering, Metall. Mater. Trans. B 49 (2018) 3357-3366.
DOI: 10.1007/s11663-018-1416-3
Google Scholar
[29]
H. Okashita, Primary beam filter method for fluorescent X-ray analysis, Adv. X-Ray Chem. Anal., Japan, 8 (1976) 105-115 (in Japanese).
Google Scholar
[30]
J. B. Kortright, A. C. Thompson. Section 1.2 X-Ray Emission Energies, in: A. C. Thompson, D. Vaughan (Eds.), X-RAY Data Booklet, third edition, Lawrence Berkeley National Laboratory, Berkeley, 2009, pp.8-27.
Google Scholar
[31]
M. Mantler. Chapter 5.9 Errors and Reliability Issues, in: B. Beckhoff, B. Kanngieβer, N. Langhoff, R. Wedell, and H. Wolff (Eds.), Handbook of Practical X-Ray Fluorescence Analysis, Springer, Berlin, 2005, pp.395-399.
DOI: 10.1007/978-3-540-36722-2
Google Scholar