Measurements of Diffusion Coefficients in Liquid Alloys Using Two Measurement Points of In Situ X-Ray Fluorescence Analysis

Article Preview

Abstract:

The objective of this study is to quantify the improvement of diffusion experiments in liquid alloys by using two measurement points of in situ X-ray fluorescence analysis (in situ XRF). The impurity diffusion coefficient of Bi in liquid Sn at 573 K was measured by monitoring the temporal change in the Bi concentration at two fixed points using in situ XRF. In the present study, two XRF measurement points were set in order to determine two unknown parameters that corresponded to the diffusion coefficient and the initial concentration at the measurement point just after complete melting. When only one measurement point is set for in situ XRF, the initial concentration is treated as a variable and the obtained impurity diffusion coefficients of Bi deviated by 20-30% from the reliable reference data. By using two measurement points for in situ XRF, the obtained impurity diffusion coefficient of Bi was (2.44±0.08)×10-9 m2s-1 and agreed with the reference data in the reported uncertainty of ±10%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-138

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Malmejac, G. Frohberg, Mass Transport by Diffusion, in: H. U. Walter (Eds.), Fluid Sciences and Materials Science in Space, Springer, Berlin, 1987, pp.159-190.

DOI: 10.1007/978-3-642-46613-7_5

Google Scholar

[2] T. Itami, T. Masaki, H. Aoki, S. Munejiri, M. Uchida, S. Matsumoto, K. Kamiyama, and K. Hoshino, Self-diffusion under microgravity and structure of group IVB liquids, J. Non-Cryst. Solids 312 (2002) 177-181.

DOI: 10.1016/s0022-3093(02)01684-8

Google Scholar

[3] G. Mathiak, A. Griesche, K.-H. Kraatz, and G. Frohberg, Diffusion in liquid metals, J. Non-Cryst. Solids 205 (1996) 412-416.

DOI: 10.1016/s0022-3093(96)00253-0

Google Scholar

[4] E. Sondermann, F. Kargl, and A. Meyer, Influence of cross correlations on interdiffusion in Al-rich Al-Ni melts, Phys. Rev. B 93 (2016) 184201.

DOI: 10.1103/physrevb.93.184201

Google Scholar

[5] E. Sondermann, N. Jakse, K. Binder, A. Mielke, D. Heuskin, F. Kargl, and A. Meyer, Concentration dependence of interdiffusion in aluminum-rich Al-Cu melts, Phys. Rev. B 99 (2019) 024204.

DOI: 10.1103/physrevb.99.024204

Google Scholar

[6] H. Weis, F. Kargl, M. Kolbe, M. M. Koza, T. Unruh, and A. Meyer, Self- and interdiffusion in dilute liquid germanium-based alloys, J. Condens. Matter Phys. 31 (2019) 455101.

DOI: 10.1088/1361-648x/ab354e

Google Scholar

[7] J. P. Garandet, G. Mathiak, V. Botton, P. Lehmann, and A. Griesche, Reference microgravity measurements of liquid phase solute diffusivities in tin- and aluminum-based alloys, Int. J. Thermophys. 25 (2004) 249-272.

DOI: 10.1023/b:ijot.0000022338.21866.f9

Google Scholar

[8] A. Griesche, M.-P. Macht, S. Suzuki, K.-H. Kraatz, and G. Frohberg, Self-diffusion of Pd, Cu and Ni in Pd-based equilibrium melts. Scr. Mater. 57 (2007) 477-480.

DOI: 10.1016/j.scriptamat.2007.05.027

Google Scholar

[9] S. Suzuki, K.-H. Kraatz, A. Griesche, and G. Frohberg, Shear cell development for diffusion experiments in FOTON-Satellite missions and on the ground with consideration of shear-induced convection, Microgravity Sci. Technol. 16 (2005) 127-132.

DOI: 10.1007/bf02945962

Google Scholar

[10] S. Suzuki, K.-H. Kraatz, and G. Frohberg, Diffusion experiments in liquid Sn-Bi and Al-Ni systems with a stable density layering using the FOTON shear cell under 1g conditions, Microgravity Sci. Technol. 16 (2005) 120-126.

DOI: 10.1007/bf02945961

Google Scholar

[11] M. Shiinoki, Y. Nishimura, K. Noboribayashi, and S. Suzuki, Suppressing natural convection for self-diffusion measurement in liquid Pb using shear cell technique by stable density layering of isotopic concentration, Metall. Mater. Trans. B 52 (2021) 3846-3859.

DOI: 10.1007/s11663-021-02300-9

Google Scholar

[12] G. Mathiak, G. Frohberg, Interdiffusion and convection in high magnetic fields, Cryst. Res. Technol. 34 (1999) 181-188.

DOI: 10.1002/(sici)1521-4079(199902)34:2<181::aid-crat181>3.0.co;2-1

Google Scholar

[13] V. Botton, P. Lehmann, R. Bolcato, and R. Moreau, Measurement of solute diffusivities. Part III. From solutal convection dominated transport to quasi-diffusive transport, Int. J. Heat Mass Transf. 47 (2004) 2457-2467.

DOI: 10.1016/j.ijheatmasstransfer.2003.10.037

Google Scholar

[14] F. Onishi, T. Miyake, Y. Inatomi, and K. Kuribayashi, Measurements of interdiffusion coefficients in metallic melts at high temperature under horizontal static magnetic field, Microgravity Sci. Technol. 18 (2006) 86-90.

DOI: 10.1007/bf02870386

Google Scholar

[15] S. Suzuki, K.-H. Kraatz, and G. Frohberg, Ground-based diffusion experiments on liquid Sn-In systems using the shear cell technique of the satellite mission Foton-M1, Ann. N. Y. Acad. Sci. 1027 (2004) 169-181.

DOI: 10.1196/annals.1324.016

Google Scholar

[16] S. Yoda, H. Oda, T. Oida, T. Masaki, M. Kaneko, and K. Higashino, Measurement of high accurate diffusion coefficient in melt of semiconductor and metal by using shear cell method, J. Jpn. Soc. Microgravity Appl. 16 (1999) 111-118.

Google Scholar

[17] Y. Geng, C. Zhu, and B. Zhang, A sliding cell technique for diffusion measurements in liquid metals, AIP Adv. 4 (2014) 037102.

Google Scholar

[18] B. Zhang, A. Griesche, and A. Meyer, Diffusion in Al-Cu melts studied by time-resolved X-ray radiography, Phys. Rev. Lett. 104 (2010) 035902.

DOI: 10.1103/physrevlett.104.035902

Google Scholar

[19] A. Griesche, B. Zhang, E. Solórzano, and F. García-Moreno, Note: X-ray radiography for measuring chemical diffusion in metallic melts, Rev. Sci. Instrum. 81 (2010) 056104.

DOI: 10.1063/1.3427256

Google Scholar

[20] F. Kargl, M. Engelhardt, F. Yang, H. Weis, P. Schmakat, B. Schillinger, A. Griesche, and A. Meyer, In situ studies of mass transport in liquid alloys by means of neutron radiography, J. Condens. Matter Phys. 23 (2011) 254201.

DOI: 10.1088/0953-8984/23/25/254201

Google Scholar

[21] T. Ujihara, K. Fujiwara, G. Sazaki, N. Usami, and K. Nakajima, Simultaneous in situ measurement of solute and temperature distributions in the alloy solutions, J. Cryst. Growth 242 (2002) 313-320.

DOI: 10.1016/s0022-0248(02)01423-9

Google Scholar

[22] R. Yamatake, M. Shiinoki, Y. Kobayashi, T. Masaki, and S. Suzuki, Spectral processing and intensity ratio measurement using X-ray fluorescence analysis in liquid alloys, Int. J. Microgravity Sci. Appl. 38 (2021) 380303.

Google Scholar

[23] T. Masaki, S. Suzuki, Measurement of diffusion coefficients in melts by using an X-ray fluorescence spectroscopy, Sp. Util. Res. 29 (2015) 103-104 (in Japanese).

Google Scholar

[24] K. Fujita, Y. Shimura, S. Suzuki, and T. Masaki, Feasibility study of in-situ observation of diffusion in liquid metals by using a fluorescent X-ray spectroscopy, Int. J. Microgravity Sci. Appl. 35 (2018) 350404 (in Japanese).

Google Scholar

[25] Y. Kobayashi, M. Shiinoki, R. Yamatake, T. Masaki, and S. Suzuki, Required diffusion time for in-situ measurement of diffusion coefficients in liquid alloys by X-ray fluorescence analysis, Int. J. Microgravity Sci. Appl. 38 (2021) 380302.

Google Scholar

[26] Y. Kobayashi, M. Shiinoki, S. Kato, T. Masaki, and S. Suzuki, Elimination of systematic error in diffusion measurement using in-situ X-ray fluorescence analysis for liquid alloys, Int. J. Microgravity Sci. Appl. 40 (2023) 400403.

Google Scholar

[27] S. Suzuki, K.-H. Kraatz, and G. Frohberg, The effect of shear convection on diffusion measurements in liquid metals using the Foton shear cell, Microgravity Sci. Technol. 18 (2006) 155-159.

DOI: 10.1007/bf02870400

Google Scholar

[28] M. Shiinoki, N. Hashimoto, H. Fukuda, Y. Ando, and S. Suzuki, Self-diffusion measurements of liquid Sn using the shear cell technique and stable density layering, Metall. Mater. Trans. B 49 (2018) 3357-3366.

DOI: 10.1007/s11663-018-1416-3

Google Scholar

[29] H. Okashita, Primary beam filter method for fluorescent X-ray analysis, Adv. X-Ray Chem. Anal., Japan, 8 (1976) 105-115 (in Japanese).

Google Scholar

[30] J. B. Kortright, A. C. Thompson. Section 1.2 X-Ray Emission Energies, in: A. C. Thompson, D. Vaughan (Eds.), X-RAY Data Booklet, third edition, Lawrence Berkeley National Laboratory, Berkeley, 2009, pp.8-27.

Google Scholar

[31] M. Mantler. Chapter 5.9 Errors and Reliability Issues, in: B. Beckhoff, B. Kanngieβer, N. Langhoff, R. Wedell, and H. Wolff (Eds.), Handbook of Practical X-Ray Fluorescence Analysis, Springer, Berlin, 2005, pp.395-399.

DOI: 10.1007/978-3-540-36722-2

Google Scholar