Interdiffusion in β Phase Field of Ternary (Ni, Ru)Al System

Article Preview

Abstract:

Bond coats play a vital role in multi-layered thermal barrier coatings (TBCs), commonly made of B2 (Ni, Pt)Al. However, the presence of platinum (Pt) makes the bond coats costly. To reduce the overall cost and enhance the working temperature of TBCs, Pt can be partially or completely replaced by ruthenium (Ru). For the development of Ru-based bond coats, understanding the interdiffusion behavior of (Ni, Ru)Al is essential. In the present work, the interdiffusion behavior in the single B2 phase of the ternary (Ni, Ru)Al system was studied at 1100 °C using the diffusion couple technique. Experimental concentration profiles were obtained using an Electron Probe Micro-Analyzer, which was further fitted and analyzed for interdiffusion fluxes by utilizing the MultiDiflux software. Kirkaldy's approach was employed to determine the interdiffusion coefficients in the ternary B2 (Ni, Ru)Al system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-114

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Roger C. Reed, The Superalloys Fundamentals and Applications, Cambridge, New York, 2006.

Google Scholar

[2] Kunal Mondal, Luis Nuñez, Calvin M. Downey, and Isabella J. van Rooyen, Thermal Barrier Coatings Overview: Design, Manufacturing, and Applications in High-Temperature Industries, Ind. Eng. Chem. Res. 60 (2021) 6061−6077.

DOI: 10.1021/acs.iecr.1c00788

Google Scholar

[3] Julián D. Osorioa, Juan P. Hernández-Ortiza, Alejandro Torod, Microstructure characterization of thermal barrier coating systems after controlled exposure to a high temperature, Ceram. Int 40 (2014) 4663–4671.

DOI: 10.1016/j.ceramint.2013.09.007

Google Scholar

[4] Miracle D. B., The Physical And Mechanical Properties Of NiA1, Acta Metall. Mater. 41 (1993) 649-684.

Google Scholar

[5] Baker I, A review of the mechanical properties of B2 compounds, Mater. Sci. Eng. A 192/193 (1995) 1-13.

Google Scholar

[6] Tryon B., Murphy K. S., Yang J. Y., Levi C. G., Pollock T. M., Hybrid intermetallic Ru/Pt-modified bond coatings for thermal barrier systems, Surf. Coating. Technol. 202 (2007) 349–361.

DOI: 10.1016/j.surfcoat.2007.05.086

Google Scholar

[7] Dipak K. Das, Kenneth S. Murphy, Shuwei Ma, And Tresa M. Pollock, Formation of Secondary Reaction Zones in Diffusion Aluminide-Coated Ni-Base Single-Crystal Superalloys Containing Ruthenium, Metall Mater Trans A 39A (2008) 1647-1657.

DOI: 10.1007/s11661-008-9534-1

Google Scholar

[8] Ying Wang, Hong-bo Guo, Hui Peng, Li-quan Peng, Sheng-kai Gong, Diffusion barrier behaviours of (Ru, Ni)Al/NiAl coatings on Ni-based superalloy substrate, Intermetallics 19 (2011) 191-195.

DOI: 10.1016/j.intermet.2010.08.016

Google Scholar

[9] Tryon B., Cao F., Murphy K. S., Levi C.G., Pollock T. M., Ruthenium-Containing Bond Coats for Thermal Barrier Coating Systems, J. Occup. Med. (2006) 53-59.

DOI: 10.1007/s11837-006-0069-x

Google Scholar

[10] Das D. K., Murphy K. S., Ma S., Pollock T. M., Formation of Secondary Reaction Zones in Diffusion Aluminide-Coated Ni-Base Single-Crystal Superalloys Containing Ruthenium, Metall. Mater. Trans. A 39 (2008) 1647-1657.

DOI: 10.1007/s11661-008-9534-1

Google Scholar

[11] Wang D., Peng H., Gong S., Guo H., NiAlHf/Ru: Promising bond coat materials in thermal barrier coatings for advanced single crystal superalloys, Corrosion Sci. 78 (2014) 304–312.

DOI: 10.1016/j.corsci.2013.10.013

Google Scholar

[12] Nakamura R., Takasawa K., Yamazaki Y., Iijima Y., Single-phase interdiffusion in the B2 type intermetallic compounds NiAl, CoAl and FeAl, Intermetallics 10 (2002) 195–204.

DOI: 10.1016/s0966-9795(01)00125-x

Google Scholar

[13] Paul A., Kodentsov A. A., van Loo F. J. J., Bifurcation of the Kirkendall plane during interdiffusion in the intermetallic compound b-NiAl, Acta Mater. 52 (2004) 4041–4048.

DOI: 10.1016/j.actamat.2004.05.028

Google Scholar

[14] Paul A., Kodentsov A. A., van Loo F. J. J. J., On diffusion in the β-NiAl phase, Alloys Compd. 403 (2005) 147–153.

DOI: 10.1016/j.jallcom.2005.04.194

Google Scholar

[15] Woll K., Holzapfel C., Gobran H. A., Muecklich F., Single-phase interdiffusion in B2-RuAl intermetallic compound, Scripta Mater. 57 (2007) 1–4.

DOI: 10.1016/j.scriptamat.2007.03.028

Google Scholar

[16] Kulkarni K.N., Tryon B., Pollock T.M., Dayananda M.A.J., Ternary Diffusion in a RuAl-NiAl Couple, Phase Equilibria Diffus, 28 (2007) 503–509.

DOI: 10.1007/s11669-007-9199-2

Google Scholar

[17] Qin Li, Jing Zhong, Ying Tang, Chunming Deng and Lijun Zhang, Composition-dependent interdiffusivities of bcc_B2 phase in Ni-Al–Ru system, Int. J. Mater. Res. 113(5) (2022) 372–380.

Google Scholar

[18] J.S. Kirkaldy, J.E. Lane, and G.R. Mason, Solutions of the Multicomponent Diffusion Equations With Variable Coefficients. Can. J. Phys., 41 (1963) 2174–86.

DOI: 10.1139/p63-212

Google Scholar

[19] L. Onsager, Reciprocal relations in irreversible processes. I, Physical Review 37 (1931) 405.

DOI: 10.1103/physrev.37.405

Google Scholar

[20] https://engineering.purdue.edu/MSE/research/MultiDiFlux/index.html

Google Scholar

[21] A. Tripathi, S. Middleton, E. J. Lavernia, A. K. Sachdev and Kaustubh N. Kulkarni, Ternary Interdiffusion in b (BCC) Phase of the Ti-Al-Nb System", J. Phase Equilib. Diffus., 39 (6) (2018) 841-852

DOI: 10.1007/s11669-018-0680-x

Google Scholar

[22] G. P. S. Chauhan and Kaustubh N. Kulkarni, Investigations of Ternary Interdiffusion in β-(BCC) Phase Field of Ti-Al-Mo System, Metall. Mater. Trans. A, 52A (2021) 413-425

DOI: 10.1007/s11661-020-06056-w

Google Scholar

[23] B. Samantaray, D. Das, Z. Alam and Kaustubh N. Kulkarni, Ternary Interdiffusion Analysis in β-(Ni,Pt)Al System Pertaining to Bond Coat Applications, Metall. Mater. Trans. A, 55A (2024) 2200-2212

DOI: 10.1007/s11661-024-07421-9

Google Scholar

[24] J.S. Kirkaldy, D. Weichert, And Zia-Ul-Haq, Some Thermodynamic Properties of the D Matrix and the Corresponding Solutions of the Diffusion Equations. Can. J. Phys., 41 (1963)2166–73.

DOI: 10.1139/p63-211

Google Scholar