[1]
L. Kunčická, R. Kocich, T.C. Lowe, Advances in metals and alloys for joint replacement, Prog. Mater. Sci. 88 (2017) 232–280.
DOI: 10.1016/j.pmatsci.2017.04.002
Google Scholar
[2]
M. Roach, Base Metal Alloys Used for Dental Restorations and Implants, Dent Clin. 51 (2007) 603–627.
DOI: 10.1016/j.cden.2007.04.001
Google Scholar
[3]
F. Yildz, A.F. Yetim, A. Alsaran, A.C. Elik, I. Kaymaz, Fretting fatigue properties of plasma nitrided AISI 316 L stainless steel: experiments and finite element analysis, Tribol. Int. 44 (2011) 1979–1986.
DOI: 10.1016/j.triboint.2011.08.011
Google Scholar
[4]
Q. Chen, G.A. Thouas, Metallic implant biomaterials, Mater. Sci. Eng. R Rep. 87 (2015)1–57.
Google Scholar
[5]
ASTM F138-19 - AMERICAN SOCIETY FOR TESTING MATERIALS: Standard Specification for Wrought 18Chromium- 14Nickel- 2.5Molibdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673). West Conshohocken, PA, 2019.
DOI: 10.1520/f0138-03
Google Scholar
[6]
S.B. Fard, M. Guagliano, Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys, Surf. Eng. 25 (2009) 3-14.
DOI: 10.1179/026708408x334087
Google Scholar
[7]
J. Biehler, H. Hoche, M. Oechsner, Nitriding behavior and corrosion properties of AISI 304L and 316L austenitic stainless steel with deformation-induced martensite, Surf. Coat. Technol. 324 (2017) 121–128.
DOI: 10.1016/j.surfcoat.2017.05.059
Google Scholar
[8]
L. Shen, L. Wang, Y. Wang, C. Wang, Plasma nitriding of AISI 304 austenitic stainless steel with pre-shot peening, Surf. Coat. Technol. 204 (2010) 3222–3227.
DOI: 10.1016/j.surfcoat.2010.03.018
Google Scholar
[9]
F. Bottoli, G. Winther, T.L. Christiansen, M.A.J. Somers, Influence of plastic deformation on low-temperature surface hardening of austenitic stainless steel by gaseous nitriding, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 46 (2015) 2579–2590.
DOI: 10.1007/s11661-015-2832-5
Google Scholar
[10]
A. Yonezu, R. Kusano, T. Hiyoshi, X. Chen, A Method to Estimate Residual Stress in Austenitic Stainless Steel Using a Microindentation Test, J. Mater. Eng. Perform. 24 (2015) 362-372.
DOI: 10.1007/s11665-014-1280-5
Google Scholar
[11]
R.R. Oliveira, Estudo do efeito da tensão residual na microdeformação da rede cristalina e no tamanho de cristalito em aço Cr-Si-V jateado com granalhas de aço, 148f, Tese de Doutorado Instituto de Pesquisas Energéticas e Nucleares/Universidade de São Paulo, São Paulo, 2016.
DOI: 10.11606/t.85.2017.tde-08022017-145103
Google Scholar
[12]
J.C. Stilville, P. Villechaise, C. Templier, J.P. Riviere, M. Drouet, Plasma nitriding of 316L austenitic stainless steel: Experimental investigation of fatigue life and surface evolution, Surf. Coat. Technol. 204 (2010) 1947–1951.
DOI: 10.1016/j.surfcoat.2009.09.052
Google Scholar
[13]
M.A.J Somers, T.L. Christiansen, Nitriding of Steels, Encyclopedia of Materials: Metals and Alloys, 2, (2022) 173-189.
DOI: 10.1016/b978-0-12-819726-4.00036-3
Google Scholar
[14]
P.G. Ranaware, M.J. Rathod, Synergetic effect of thicker nanocrystalline structure with high amount of strain induced martensite on surface characteristics of plasma nitride austenitic stainless steel. Surf. Coat. Technol. 302 (2016) 265-274.
DOI: 10.1016/j.surfcoat.2016.05.085
Google Scholar
[15]
M.R. Menezes, C. Godoy, V.T.L. Buono, M.M.M. Schvartzman, J.C.A.B. Wilson, Effect of shot peening and treatment temperature on wear and corrosion resistance of sequentially plasma treated AISI 316L steel. Surf. Coat. Technol. 309 (2017) 651–662.
DOI: 10.1016/j.surfcoat.2016.12.037
Google Scholar
[16]
S.D. Sousa, M. Olzon-Dionysio, R.L.O. Basso, S. Souza, Mössbauer spectroscopy study on the corrosion resistance of plasma nitrided ASTM F138 stainless steel in chloride solution. Mater. Charact. 61 (2010) 992–999.
DOI: 10.1016/j.matchar.2010.06.015
Google Scholar
[17]
A.P. TSCHIPTSCHIN, C.E. PINEDO, "Estrutura e propriedades do aço inoxidável austenítico AISI 316L Grau ASTM F138 nitretado sob plasma à baixa temperatura, REM –Intern. Eng. J. 63 (2010) 137-141.
DOI: 10.1590/s0370-44672010000100023
Google Scholar
[18]
D.S. Galeano-Osorio, S. Vargas, J.M. Vélez, A. Mello, M.N. Tanaka, C.E. Castano, Hemocompatibility of plasma nitrided 316L stainless steel: Effect of processing temperature, Appl. Surf. Sci. 509 (2020) 1-9.
DOI: 10.1016/j.apsusc.2019.144704
Google Scholar
[19]
J. Dib, B. Gómez, R. Strubbia, A. Ares, C. Méndez, V. Fuster, S. Hereñú, Characterization of Plasma Nitrided Duplex Stainless Steel: Influence of Prior Shot Peening and Nitriding Atmosphere, J. Mater. Eng. Perform. 32 (2022) 406-414.
DOI: 10.1007/s11665-022-07076-w
Google Scholar
[20]
Templier, C., Stinville, J. C., Villechaise, P., Renault, P. O., Abrasonis, G., Rivière, J. P., Martinavičius, A., Drouet, M., 2010, "On lattice plane rotation and crystallographic structure of the expanded austenite in plasma nitrided AISI 316L steel", Surface & Coatings Technology, Vol. 204, p.2551–2558.
DOI: 10.1016/j.surfcoat.2010.01.041
Google Scholar
[21]
T. Christiansen, M.A.J. Somers, Decomposition kinetics of expanded austenite with high nitrogen contents, Z. Metallkd. 97 (2006) 79- 88.
DOI: 10.1515/ijmr-2006-0012
Google Scholar
[22]
O. Unal, E. Maleki, R. Varol, Plasma nitriding of gradient structured AISI 304 at low temperature: Shot T peening as a catalyst treatment, Vacuum. 164 (2019) 194–197.
DOI: 10.1016/j.vacuum.2019.03.027
Google Scholar
[23]
M. Jayalakshmi, B. Ramachandra Bhat, K. Udaya Bhat, Effect of shot peening coverage on surface nanostructuring of 316L stainless steel and its influence on low temperature plasma-nitriding, Mater. Perform. Charact. 6 (2017) 1-10.
DOI: 10.1520/mpc20160079
Google Scholar
[24]
H. Riazi, F. Ashrafizadeh, S.R. Hosseini, R. Ghomashchi, Influence Of simultaneous aging and plasma nitriding on fatigue performance of 17-4 PH stainless steel, Mater. Sci. Eng. A. 703 (2017) 262– 269.
DOI: 10.1016/j.msea.2017.07.070
Google Scholar
[25]
L.B. Winck, J.L.A. Ferreira, J.A. Araujo, M.D. Manfrinato, C.R.M. Silva, Surface nitriding influence on the fatigue life behavior of ASTM A743 steel type CA6NM, Surf. Coat. Technol. 232 (2013) 844–850.
DOI: 10.1016/j.surfcoat.2013.06.110
Google Scholar
[26]
E. Menendéz, C. Templier, P. Garcia-Ramirez, J. Santiso, A. Vantomme, K.Temst, J. Nogueś, Magnetic Properties of Single Crystalline Expanded Austenite Obtained by Plasma Nitriding of Austenitic Stainless Steel Single Crystals, ACS Appl. Mater. Interfaces 5 (2013) 10118−10126.
DOI: 10.1021/am402773w
Google Scholar