Induced Residual Stress in Austenitic Stainless Steel F138 after Shot Peening and Plasma Nitriding Surface Treatment

Article Preview

Abstract:

Shot peening mechanical treatment surface, commonly used to improve material surface mechanical properties, as fatigue and wear resistance increase, induces deformations in the material crystal lattice, characterized by the presence of stress. Additionally, plasma nitriding, another surface treatment used to minimize failures in austenitic stainless steels, can produce resistant surface layers, composed of the interstitial nitrogen atoms accommodated in austenitic structure, increasing the layer hardness. Thus, the present work aims to study the residual stress and layer formation on austenitic stainless steel F138 surface, after different treatment conditions. Plasma nitriding treatment after shot peening differences were analyzed. Residual stress was investigated by X-ray diffraction, using sin2ψ method. Samples of surface morphology and formed layer were analyzed by scanning electron microscopy (SEM) and X-ray diffraction. Previous shot peening treatment to plasma nitriding promotes the formation of a less homogeneous layer, with microcracks and induced residual stress increase. It was observed the formation of iron nitrides and expanded austenite after plasma nitriding treatment. Surface residual stress induction after shot peening and plasma nitriding treatments can be efficient methods to improve material mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-156

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Kunčická, R. Kocich, T.C. Lowe, Advances in metals and alloys for joint replacement, Prog. Mater. Sci. 88 (2017) 232–280.

DOI: 10.1016/j.pmatsci.2017.04.002

Google Scholar

[2] M. Roach, Base Metal Alloys Used for Dental Restorations and Implants, Dent Clin. 51 (2007) 603–627.

DOI: 10.1016/j.cden.2007.04.001

Google Scholar

[3] F. Yildz, A.F. Yetim, A. Alsaran, A.C. Elik, I. Kaymaz, Fretting fatigue properties of plasma nitrided AISI 316 L stainless steel: experiments and finite element analysis, Tribol. Int. 44 (2011) 1979–1986.

DOI: 10.1016/j.triboint.2011.08.011

Google Scholar

[4] Q. Chen, G.A. Thouas, Metallic implant biomaterials, Mater. Sci. Eng. R Rep. 87 (2015)1–57.

Google Scholar

[5] ASTM F138-19 - AMERICAN SOCIETY FOR TESTING MATERIALS: Standard Specification for Wrought 18Chromium- 14Nickel- 2.5Molibdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673). West Conshohocken, PA, 2019.

DOI: 10.1520/f0138-03

Google Scholar

[6] S.B. Fard, M. Guagliano, Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys, Surf. Eng. 25 (2009) 3-14.

DOI: 10.1179/026708408x334087

Google Scholar

[7] J. Biehler, H. Hoche, M. Oechsner, Nitriding behavior and corrosion properties of AISI 304L and 316L austenitic stainless steel with deformation-induced martensite, Surf. Coat. Technol. 324 (2017) 121–128.

DOI: 10.1016/j.surfcoat.2017.05.059

Google Scholar

[8] L. Shen, L. Wang, Y. Wang, C. Wang, Plasma nitriding of AISI 304 austenitic stainless steel with pre-shot peening, Surf. Coat. Technol. 204 (2010) 3222–3227.

DOI: 10.1016/j.surfcoat.2010.03.018

Google Scholar

[9] F. Bottoli, G. Winther, T.L. Christiansen, M.A.J. Somers, Influence of plastic deformation on low-temperature surface hardening of austenitic stainless steel by gaseous nitriding, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 46 (2015) 2579–2590.

DOI: 10.1007/s11661-015-2832-5

Google Scholar

[10] A. Yonezu, R. Kusano, T. Hiyoshi, X. Chen, A Method to Estimate Residual Stress in Austenitic Stainless Steel Using a Microindentation Test, J. Mater. Eng. Perform. 24 (2015) 362-372.

DOI: 10.1007/s11665-014-1280-5

Google Scholar

[11] R.R. Oliveira, Estudo do efeito da tensão residual na microdeformação da rede cristalina e no tamanho de cristalito em aço Cr-Si-V jateado com granalhas de aço, 148f, Tese de Doutorado Instituto de Pesquisas Energéticas e Nucleares/Universidade de São Paulo, São Paulo, 2016.

DOI: 10.11606/t.85.2017.tde-08022017-145103

Google Scholar

[12] J.C. Stilville, P. Villechaise, C. Templier, J.P. Riviere, M. Drouet, Plasma nitriding of 316L austenitic stainless steel: Experimental investigation of fatigue life and surface evolution, Surf. Coat. Technol. 204 (2010) 1947–1951.

DOI: 10.1016/j.surfcoat.2009.09.052

Google Scholar

[13] M.A.J Somers, T.L. Christiansen, Nitriding of Steels, Encyclopedia of Materials: Metals and Alloys, 2, (2022) 173-189.

DOI: 10.1016/b978-0-12-819726-4.00036-3

Google Scholar

[14] P.G. Ranaware, M.J. Rathod, Synergetic effect of thicker nanocrystalline structure with high amount of strain induced martensite on surface characteristics of plasma nitride austenitic stainless steel. Surf. Coat. Technol. 302 (2016) 265-274.

DOI: 10.1016/j.surfcoat.2016.05.085

Google Scholar

[15] M.R. Menezes, C. Godoy, V.T.L. Buono, M.M.M. Schvartzman, J.C.A.B. Wilson, Effect of shot peening and treatment temperature on wear and corrosion resistance of sequentially plasma treated AISI 316L steel. Surf. Coat. Technol. 309 (2017) 651–662.

DOI: 10.1016/j.surfcoat.2016.12.037

Google Scholar

[16] S.D. Sousa, M. Olzon-Dionysio, R.L.O. Basso, S. Souza, Mössbauer spectroscopy study on the corrosion resistance of plasma nitrided ASTM F138 stainless steel in chloride solution. Mater. Charact. 61 (2010) 992–999.

DOI: 10.1016/j.matchar.2010.06.015

Google Scholar

[17] A.P. TSCHIPTSCHIN, C.E. PINEDO, "Estrutura e propriedades do aço inoxidável austenítico AISI 316L Grau ASTM F138 nitretado sob plasma à baixa temperatura, REM –Intern. Eng. J. 63 (2010) 137-141.

DOI: 10.1590/s0370-44672010000100023

Google Scholar

[18] D.S. Galeano-Osorio, S. Vargas, J.M. Vélez, A. Mello, M.N. Tanaka, C.E. Castano, Hemocompatibility of plasma nitrided 316L stainless steel: Effect of processing temperature, Appl. Surf. Sci. 509 (2020) 1-9.

DOI: 10.1016/j.apsusc.2019.144704

Google Scholar

[19] J. Dib, B. Gómez, R. Strubbia, A. Ares, C. Méndez, V. Fuster, S. Hereñú, Characterization of Plasma Nitrided Duplex Stainless Steel: Influence of Prior Shot Peening and Nitriding Atmosphere, J. Mater. Eng. Perform. 32 (2022) 406-414.

DOI: 10.1007/s11665-022-07076-w

Google Scholar

[20] Templier, C., Stinville, J. C., Villechaise, P., Renault, P. O., Abrasonis, G., Rivière, J. P., Martinavičius, A., Drouet, M., 2010, "On lattice plane rotation and crystallographic structure of the expanded austenite in plasma nitrided AISI 316L steel", Surface & Coatings Technology, Vol. 204, p.2551–2558.

DOI: 10.1016/j.surfcoat.2010.01.041

Google Scholar

[21] T. Christiansen, M.A.J. Somers, Decomposition kinetics of expanded austenite with high nitrogen contents, Z. Metallkd. 97 (2006) 79- 88.

DOI: 10.1515/ijmr-2006-0012

Google Scholar

[22] O. Unal, E. Maleki, R. Varol, Plasma nitriding of gradient structured AISI 304 at low temperature: Shot T peening as a catalyst treatment, Vacuum. 164 (2019) 194–197.

DOI: 10.1016/j.vacuum.2019.03.027

Google Scholar

[23] M. Jayalakshmi, B. Ramachandra Bhat, K. Udaya Bhat, Effect of shot peening coverage on surface nanostructuring of 316L stainless steel and its influence on low temperature plasma-nitriding, Mater. Perform. Charact. 6 (2017) 1-10.

DOI: 10.1520/mpc20160079

Google Scholar

[24] H. Riazi, F. Ashrafizadeh, S.R. Hosseini, R. Ghomashchi, Influence Of simultaneous aging and plasma nitriding on fatigue performance of 17-4 PH stainless steel, Mater. Sci. Eng. A. 703 (2017) 262– 269.

DOI: 10.1016/j.msea.2017.07.070

Google Scholar

[25] L.B. Winck, J.L.A. Ferreira, J.A. Araujo, M.D. Manfrinato, C.R.M. Silva, Surface nitriding influence on the fatigue life behavior of ASTM A743 steel type CA6NM, Surf. Coat. Technol. 232 (2013) 844–850.

DOI: 10.1016/j.surfcoat.2013.06.110

Google Scholar

[26] E. Menendéz, C. Templier, P. Garcia-Ramirez, J. Santiso, A. Vantomme, K.Temst, J. Nogueś, Magnetic Properties of Single Crystalline Expanded Austenite Obtained by Plasma Nitriding of Austenitic Stainless Steel Single Crystals, ACS Appl. Mater. Interfaces 5 (2013) 10118−10126.

DOI: 10.1021/am402773w

Google Scholar